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Introducing Genetic
Algorithm and Direct
Search Toolbox™ Functions

Product Overview (p. 1-2) Introduces the toolbox and its
features.

Writing M-Files for Functions You
Want to Optimize (p. 1-3)

Explains how to write M-files that
compute the functions you want to
optimize.



1 Introducing Genetic Algorithm and Direct Search Toolbox™ Functions

Product Overview
Genetic Algorithm and Direct Search Toolbox™ functions extend the
capabilities of Optimization Toolbox™ software and the MATLAB® numeric
computing environment. They include routines for solving optimization
problems using

• Direct search

• Genetic algorithm

• Simulated annealing

These algorithms enable you to solve a variety of optimization problems that
lie outside the scope of Optimization Toolbox solvers.

All the toolbox functions are M-files made up of MATLAB statements that
implement specialized optimization algorithms. You can view the MATLAB
code for these functions using the statement

type function_name

You can extend the capabilities of Genetic Algorithm and Direct Search
Toolbox functions by writing your own M-files, or by using them in combination
with other toolboxes, or with the MATLAB or Simulink® environments.

1-2



Writing M-Files for Functions You Want to Optimize

Writing M-Files for Functions You Want to Optimize

In this section...

“Computing Objective Functions” on page 1-3

“Example — Writing an M-File” on page 1-3

“Maximizing vs. Minimizing” on page 1-4

Computing Objective Functions
To use Genetic Algorithm and Direct Search Toolbox™ functions, you must
first write an M-file (or else an anonymous function) that computes the
function you want to optimize. The M-file should accept a vector, whose length
is the number of independent variables for the objective function, and return
a scalar. This section explains how to write the M-file.

Example — Writing an M-File
The following example shows how to write an M-file for the function you want
to optimize. Suppose that you want to minimize the function

f x x x x x x x x( , )1 2 1
2

1 2 1 2
2

22 6 6= − + + −

The M-file that computes this function must accept a vector x of length 2,
corresponding to the variables x1 and x2, and return a scalar equal to the value
of the function at x. To write the M-file, do the following steps:

1 Select New from the MATLAB® File menu.

2 Select M-File. This opens a new M-file in the editor.

3 In the M-file, enter the following two lines of code:

function z = my_fun(x)
z = x(1)^2 - 2*x(1)*x(2) + 6*x(1) + x(2)^2 - 6*x(2);

4 Save the M-file in a directory on the MATLAB path.

To check that the M-file returns the correct value, enter
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my_fun([2 3])

ans =

-5

Maximizing vs. Minimizing
Genetic Algorithm and Direct Search Toolbox optimization functions minimize
the objective or fitness function. That is, they solve problems of the form

min ( ).
x

f x

If you want to maximize f(x), you can do so by minimizing –f(x), because the
point at which the minimum of –f(x) occurs is the same as the point at which
the maximum of f(x) occurs.

For example, suppose you want to maximize the function

f x x x x x x x x( , )1 2 1
2

1 2 1 2
2

22 6 6= − + + −

described in the preceding section. In this case, you should write your M-file
to compute

g x x f x x x x x x x x( , ) ( , )1 2 1 2 1
2

1 2 1 2
2

22 6 6= − = − + − − +

and minimize g(x).
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What Is Direct Search? (p. 2-2) Introduces direct search and pattern
search.

Performing a Pattern Search (p. 2-3) Explains the main function for
performing pattern search.

Example: Finding the Minimum of a
Function Using the GPS Algorithm
(p. 2-7)

Provides an example of solving an
optimization problem using pattern
search.

Pattern Search Terminology (p. 2-12) Explains some basic pattern search
terminology.

How Pattern Search Works (p. 2-15) Provides an overview of direct search
algorithms.

Description of the Nonlinear
Constraint Solver (p. 2-24)

Explains the Augmented Lagrangian
Pattern Search (ALPS).
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What Is Direct Search?
Direct search is a method for solving optimization problems that does not
require any information about the gradient of the objective function. Unlike
more traditional optimization methods that use information about the
gradient or higher derivatives to search for an optimal point, a direct search
algorithm searches a set of points around the current point, looking for one
where the value of the objective function is lower than the value at the current
point. You can use direct search to solve problems for which the objective
function is not differentiable, or is not even continuous.

Genetic Algorithm and Direct Search Toolbox™ functions include two direct
search algorithms called the generalized pattern search (GPS) algorithm
and the mesh adaptive search (MADS) algorithm. Both are pattern search
algorithms that compute a sequence of points that approach an optimal point.
At each step, the algorithm searches a set of points, called a mesh, around the
current point—the point computed at the previous step of the algorithm. The
mesh is formed by adding the current point to a scalar multiple of a set of
vectors called a pattern. If the pattern search algorithm finds a point in the
mesh that improves the objective function at the current point, the new point
becomes the current point at the next step of the algorithm.

The MADS algorithm is a modification of the GPS algorithm. The algorithms
differ in how the set of points forming the mesh is computed. The GPS
algorithm uses fixed direction vectors, whereas the MADS algorithm uses a
random selection of vectors to define the mesh.
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Performing a Pattern Search

In this section...

“Calling patternsearch at the Command Line” on page 2-3

“Using the Optimization Tool for Pattern Search” on page 2-3

Calling patternsearch at the Command Line
To perform a pattern search on an unconstrained problem at the command
line, call the function patternsearch with the syntax

[x fval] = patternsearch(@objfun, x0)

where

• @objfun is a handle to the objective function.

• x0 is the starting point for the pattern search.

The results are:

• x — Point at which the final value is attained

• fval — Final value of the objective function

“Performing a Pattern Search from the Command Line” on page 5-11 explains
in detail how to use the patternsearch function.

Using the Optimization Tool for Pattern Search
To open the Optimization Tool, enter

optimtool('patternsearch')

at the command line, or enter optimtool and then choose patternsearch
from the Solver menu.
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You can also launch the tool from the MATLAB® Start menu as pictured:
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To use the Optimization Tool, first enter the following information:

• Objective function — The objective function you want to minimize.
Enter the objective function in the form @objfun, where objfun.m is an
M-file that computes the objective function. The @ sign creates a function
handle to objfun.

• Start point — The initial point at which the algorithm starts the
optimization.
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In the Constraints pane, enter linear constraints, bounds, or a nonlinear
constraint function as a function handle for the problem. If the problem is
unconstrained, leave these fields blank.

Then, click Start. The tool displays the results of the optimization in the
Run solver and view results pane.

In the Options pane, set the options for the pattern search. To view the
options in a category, click the + sign next to it.

“Finding the Minimum of the Function” on page 2-8 gives an example of using
the Optimization Tool.

The “Optimization Tool” chapter in the Optimization Toolbox™ User’s Guide
provides a detailed description of the Optimization Tool.
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Example: Finding the Minimum of a Function Using the
GPS Algorithm

In this section...

“Objective Function” on page 2-7

“Finding the Minimum of the Function” on page 2-8

“Plotting the Objective Function Values and Mesh Sizes” on page 2-9

Objective Function
This example uses the objective function, ps_example, which is included with
Genetic Algorithm and Direct Search Toolbox™ software. View the code for
the function by entering

type ps_example

The following figure shows a plot of the function.
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Finding the Minimum of the Function
To find the minimum of ps_example, perform the following steps:

1 Enter

optimtool

and then choose the patternsearch solver.

2 In the Objective function field of the Optimization Tool, enter
@ps_example.

3 In the Start point field, type [2.1 1.7].

Leave the fields in the Constraints pane blank because the problem is
unconstrained.

4 Click Start to run the pattern search.

The Run solver and view results pane displays the results of the pattern
search.
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The reason the optimization terminated is that the mesh size became smaller
than the acceptable tolerance value for the mesh size, defined by the Mesh
tolerance parameter in the Stopping criteria pane. The minimum function
value is approximately –2. The Final point pane displays the point at which
the minimum occurs.

Plotting the Objective Function Values and Mesh Sizes
To see the performance of the pattern search, display plots of the best function
value and mesh size at each iteration. First, select the following check boxes
in the Plot functions pane:

• Best function value

• Mesh size
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Then click Start to run the pattern search. This displays the following plots.

The upper plot shows the objective function value of the best point at each
iteration. Typically, the objective function values improve rapidly at the early
iterations and then level off as they approach the optimal value.
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The lower plot shows the mesh size at each iteration. The mesh size increases
after each successful iteration and decreases after each unsuccessful one,
explained in “How Pattern Search Works” on page 2-15.
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Pattern Search Terminology

In this section...

“Patterns” on page 2-12

“Meshes” on page 2-13

“Polling” on page 2-13

“Expanding and Contracting” on page 2-14

Patterns
A pattern is a set of vectors {vi} that the pattern search algorithm uses to
determine which points to search at each iteration. The set {vi} is defined by
the number of independent variables in the objective function, N, and the
positive basis set. Two commonly used positive basis sets in pattern search
algorithms are the maximal basis, with 2N vectors, and the minimal basis,
with N+1 vectors.

With GPS, the collection of vectors that form the pattern are fixed-direction
vectors. For example, if there are three independent variables in the
optimization problem, the default for a 2N positive basis consists of the
following pattern vectors:

v v v
v v v

1 2 3

4 5 6

1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1

= = =
= − = − = −

[ ] [ ] [ ]
[ ] [ ] [ ]

An N+1 positive basis consists of the following default pattern vectors.

v v v
v

1 2 3

4

1 0 0 0 1 0 0 0 1
1 1 1

= = =
= − − −

[ ] [ ] [ ]
[ ]

With MADS, the collection of vectors that form the pattern are randomly
selected by the algorithm. Depending on the poll method choice, the number
of vectors selected will be 2N or N+1. As in GPS, 2N vectors consist of N
vectors and their N negatives, while N+1 vectors consist of N vectors and one
that is the negative of the sum of the others.
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Meshes
At each step, the pattern search algorithm searches a set of points, called a
mesh, for a point that improves the objective function. The GPS and MADS
algorithms form the mesh by

1 Generating a set of vectors {di} by multiplying each pattern vector vi by a
scalar Δm. Δm is called the mesh size.

2 Adding the { }di to the current point—the point with the best objective
function value found at the previous step.

For example, using the GPS algorithm. suppose that:

• The current point is [1.6 3.4].

• The pattern consists of the vectors

v

v

v

v

1

2

3

4

1 0

0 1

1 0

0 1

= [ ]
= [ ]
= −[ ]
= −[ ]

• The current mesh size Δm is 4.

The algorithm multiplies the pattern vectors by 4 and adds them to the
current point to obtain the following mesh.

[1.6 3.4] + 4*[1 0] = [5.6 3.4]
[1.6 3.4] + 4*[0 1] = [1.6 7.4]
[1.6 3.4] + 4*[-1 0] = [-2.4 3.4]
[1.6 3.4] + 4*[0 -1] = [1.6 -0.6]

The pattern vector that produces a mesh point is called its direction.

Polling
At each step, the algorithm polls the points in the current mesh by computing
their objective function values. When the Complete poll option has the
(default) setting Off, the algorithm stops polling the mesh points as soon as it
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finds a point whose objective function value is less than that of the current
point. If this occurs, the poll is called successful and the point it finds becomes
the current point at the next iteration.

The algorithm only computes the mesh points and their objective function
values up to the point at which it stops the poll. If the algorithm fails to find a
point that improves the objective function, the poll is called unsuccessful and
the current point stays the same at the next iteration.

When the Complete poll option has the setting On, the algorithm computes
the objective function values at all mesh points. The algorithm then compares
the mesh point with the smallest objective function value to the current
point. If that mesh point has a smaller value than the current point, the
poll is successful.

Expanding and Contracting
After polling, the algorithm changes the value of the mesh size Δm. The
default is to multiply Δm by 2 after a successful poll, and by 0.5 after an
unsuccessful poll.

2-14



How Pattern Search Works

How Pattern Search Works

In this section...

“Context” on page 2-15

“Successful Polls” on page 2-15

“An Unsuccessful Poll” on page 2-18

“Displaying the Results at Each Iteration” on page 2-19

“More Iterations” on page 2-20

“Stopping Conditions for the Pattern Search” on page 2-21

Context
The pattern search algorithms find a sequence of points, x0, x1, x2, ... ,
that approaches an optimal point. The value of the objective function either
decreases or remains the same from each point in the sequence to the next.
This section explains how pattern search works for the function described in
“Example: Finding the Minimum of a Function Using the GPS Algorithm”
on page 2-7.

To simplify the explanation, this section describes how the generalized
pattern search (GPS) works using a maximal positive basis of 2N, with Scale
set to Off in Mesh options.

Successful Polls
The pattern search begins at the initial point x0 that you provide. In this
example, x0 = [2.1 1.7].

Iteration 1
At the first iteration, the mesh size is 1 and the GPS algorithm adds the
pattern vectors to the initial point x0 = [2.1 1.7] to compute the following
mesh points:

[1 0] + x0 = [3.1 1.7]
[0 1] + x0 = [2.1 2.7]
[-1 0] + x0 = [1.1 1.7]
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[0 -1] + x0 = [2.1 0.7]

The algorithm computes the objective function at the mesh points in the order
shown above. The following figure shows the value of ps_example at the
initial point and mesh points.

1 1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

4.7824.63474.5146

5.6347

3.6347

Objective Function Values at Initial Point and Mesh Points

Initial point x0
Mesh points
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The algorithm polls the mesh points by computing their objective function
values until it finds one whose value is smaller than 4.6347, the value at x0.
In this case, the first such point it finds is [1.1 1.7], at which the value of
the objective function is 4.5146, so the poll at iteration 1 is successful. The
algorithm sets the next point in the sequence equal to

x1 = [1.1 1.7]
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Note By default, the GPS pattern search algorithm stops the current
iteration as soon as it finds a mesh point whose fitness value is smaller than
that of the current point. Consequently, the algorithm might not poll all the
mesh points. You can make the algorithm poll all the mesh points by setting
Complete poll to On.

Iteration 2
After a successful poll, the algorithm multiplies the current mesh size by 2,
the default value of Expansion factor in the Mesh options pane. Because
the initial mesh size is 1, at the second iteration the mesh size is 2. The mesh
at iteration 2 contains the following points:

2*[1 0] + x1 = [3.1 1.7]
2*[0 1] + x1 = [1.1 3.7]
2*[-1 0] + x1 = [-0.9 1.7]
2*[0 -1] + x1 = [1.1 -0.3]

The following figure shows the point x1 and the mesh points, together with
the corresponding values of ps_example.
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Objective Function Values at x1 and Mesh Points

x1
Mesh points

The algorithm polls the mesh points until it finds one whose value is smaller
than 4.5146, the value at x1. The first such point it finds is [-0.9 1.7], at
which the value of the objective function is 3.25, so the poll at iteration 2 is
again successful. The algorithm sets the second point in the sequence equal to

x2 = [-0.9 1.7]

Because the poll is successful, the algorithm multiplies the current mesh size
by 2 to get a mesh size of 4 at the third iteration.

An Unsuccessful Poll
By the fourth iteration, the current point is

x3 = [-4.9 1.7]

and the mesh size is 8, so the mesh consists of the points

8*[1 0] + x3 = [3.1 1.7]
8*[0 1] + x3 = [-4.9 9.7]
8*[-1 0] + x3 = [-12.9 1.7]
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8*[0 -1] + x3 = [-4.9 -1.3]

The following figure shows the mesh points and their objective function values.
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−0.2649 4.728264.11

7.7351

4.3351

Objective Function Values at x3 and Mesh Points

x3
Mesh points

At this iteration, none of the mesh points has a smaller objective function
value than the value at x3, so the poll is unsuccessful. In this case, the
algorithm does not change the current point at the next iteration. That is,

x4 = x3;

At the next iteration, the algorithm multiplies the current mesh size by
0.5, the default value of Contraction factor in the Mesh options pane, so
that the mesh size at the next iteration is 4. The algorithm then polls with
a smaller mesh size.

Displaying the Results at Each Iteration
You can display the results of the pattern search at each iteration by setting
Level of display to Iterative in the Display to command window
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options. This enables you to evaluate the progress of the pattern search and
to make changes to options if necessary.

With this setting, the pattern search displays information about each iteration
at the command line. The first four lines of the display are

Iter f-count f(x) MeshSize Method
0 1 4.63474 1
1 4 4.51464 2 Successful Poll
2 7 3.25 4 Successful Poll
3 10 -0.264905 8 Successful Poll

The entry Successful Poll below Method indicates that the current iteration
was successful. For example, the poll at iteration 2 is successful. As a result,
the objective function value of the point computed at iteration 2, displayed
below f(x), is less than the value at iteration 1.

At iteration 3, the entry Refine Mesh below Method tells you that the poll is
unsuccessful. As a result, the function value at iteration 4 remains unchanged
from iteration 3.

By default, the pattern search doubles the mesh size after each successful poll
and halves it after each unsuccessful poll.

More Iterations
The pattern search performs 88 iterations before stopping. The following
plot shows the points in the sequence computed in the first 13 iterations of
the pattern search.
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The numbers below the points indicate the first iteration at which
the algorithm finds the point. The plot only shows iteration numbers
corresponding to successful polls, because the best point doesn’t change after
an unsuccessful poll. For example, the best point at iterations 4 and 5 is
the same as at iteration 3.

Stopping Conditions for the Pattern Search
The criteria for stopping the pattern search algorithm are listed in the
Stopping criteria section of the Optimization Tool:
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The algorithm stops when any of the following conditions occurs:

• The mesh size is less than Mesh tolerance.

• The number of iterations performed by the algorithm reaches the value of
Max iteration.

• The total number of objective function evaluations performed by the
algorithm reaches the value of Max function evaluations.

• The time, in seconds, the algorithm runs until it reaches the value of Time
limit.

• The distance between the point found in two consecutive iterations and the
mesh size are both less than X tolerance.
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• The change in the objective function in two consecutive iterations and the
mesh size are both less than Function tolerance.

Nonlinear constraint tolerance is not used as stopping criterion. It
determines the feasibility with respect to nonlinear constraints.

The MADS algorithm uses the relationship between the mesh size, Δm, and
an additional parameter, called the poll parameter, Δp, to determine the

stopping criteria. For positive basis N+1, the poll parameter is N mΔ , and

for positive basis 2N, the poll parameter is Δm . The relationship for MADS
stopping criteria is Δm ≤ Mesh tolerance.
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Description of the Nonlinear Constraint Solver
The pattern search algorithm uses the Augmented Lagrangian Pattern Search
(ALPS) algorithm to solve nonlinear constraint problems. The optimization
problem solved by the ALPS algorithm is

min ( )
x

f x

such that

c x i m

ceq x i m mt

A x b
Aeq x beq

lb x ub

i

i

( ) ,
( ) ,

,

≤ =
= = +

⋅ ≤
⋅ =

≤ ≤

0 1
0 1

…
…

where c(x) represents the nonlinear inequality constraints, ceq(x) represents
the equality constraints, m is the number of nonlinear inequality constraints,
and mt is the total number of nonlinear constraints.

The ALPS algorithm attempts to solve a nonlinear optimization problem
with nonlinear constraints, linear constraints, and bounds. In this approach,
bounds and linear constraints are handled separately from nonlinear
constraints. A subproblem is formulated by combining the objective function
and nonlinear constraint function using the Lagrangian and the penalty
parameters. A sequence of such optimization problems are approximately
minimized using a pattern search algorithm such that the linear constraints
and bounds are satisfied.

A subproblem formulation is defined as

Θ( , , , ) ( ) log( ( )) ( )x s f x s s c x c x ci
i

m

i i i i
i m

mt

iλ ρ λ λ
ρ= − − + +

= = +
∑ ∑

1 1 2 ii
i m

mt
x

= +
∑

1

2( ) ,

where
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• the components λ i of the vector λ are nonnegative and are known as
Lagrange multiplier estimates

• the elements si of the vector s are nonnegative shifts

• ρ is the positive penalty parameter.

The algorithm begins by using an initial value for the penalty parameter
(InitialPenalty).

The pattern search algorithm minimizes a sequence of the subproblem,
which is an approximation of the original problem. When the subproblem
is minimized to a required accuracy and satisfies feasibility conditions,
the Lagrangian estimates are updated. Otherwise, the penalty parameter
is increased by a penalty factor (PenaltyFactor). This results in a new
subproblem formulation and minimization problem. These steps are repeated
until the stopping criteria are met.

For a complete description of the algorithm, see the following references:

[1] Lewis, Robert Michael and Virginia Torczon, “A Globally Convergent
Augmented Lagrangian Pattern Search Algorithm for Optimization with
General Constraints and Simple Bounds”, SIAM Journal on Optimization,
Volume 12, Number 4, 2002, 1075–1089.

[2] Conn, A. R., N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent
Augmented Lagrangian Pattern Search Algorithm for Optimization with
General Constraints and Simple Bounds”, SIAM Journal on Numerical
Analysis, Volume 28, Number 2, 1991, 545–572.

[3] Conn, A. R., N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent
Augmented Lagrangian Pattern Search Algorithm for Optimization with
General Constraints and Simple Bounds”, Mathematics of Computation,
Volume 66, Number 217, 1997, 261–288.
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Introduces the genetic algorithm.

Performing a Genetic Algorithm
Optimization (p. 3-3)

Explains how to use the Optimization
Tool.

Example: Rastrigin’s Function
(p. 3-8)

Presents an example of solving an
optimization problem using the
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Some Genetic Algorithm
Terminology (p. 3-17)
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the genetic algorithm.

How the Genetic Algorithm Works
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What Is the Genetic Algorithm?
The genetic algorithm is a method for solving both constrained and
unconstrained optimization problems that is based on natural selection, the
process that drives biological evolution. The genetic algorithm repeatedly
modifies a population of individual solutions. At each step, the genetic
algorithm selects individuals at random from the current population to be
parents and uses them to produce the children for the next generation. Over
successive generations, the population "evolves" toward an optimal solution.
You can apply the genetic algorithm to solve a variety of optimization problems
that are not well suited for standard optimization algorithms, including
problems in which the objective function is discontinuous, nondifferentiable,
stochastic, or highly nonlinear.

The genetic algorithm uses three main types of rules at each step to create
the next generation from the current population:

• Selection rules select the individuals, called parents, that contribute to the
population at the next generation.

• Crossover rules combine two parents to form children for the next
generation.

• Mutation rules apply random changes to individual parents to form
children.

The genetic algorithm differs from a classical, derivative-based, optimization
algorithm in two main ways, as summarized in the following table.

Classical Algorithm Genetic Algorithm

Generates a single point at each
iteration. The sequence of points
approaches an optimal solution.

Generates a population of points at
each iteration. The best point in the
population approaches an optimal
solution.

Selects the next point in the sequence
by a deterministic computation.

Selects the next population by
computation which uses random
number generators.
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Performing a Genetic Algorithm Optimization

In this section...

“Calling the Function ga at the Command Line” on page 3-3

“Using the Optimization Tool” on page 3-4

Calling the Function ga at the Command Line
To use the genetic algorithm at the command line, call the genetic algorithm
function ga with the syntax

[x fval] = ga(@fitnessfun, nvars, options)

where

• @fitnessfun is a handle to the fitness function.

• nvars is the number of independent variables for the fitness function.

• options is a structure containing options for the genetic algorithm. If you
do not pass in this argument, ga uses its default options.

The results are given by

• x — Point at which the final value is attained

• fval — Final value of the fitness function

Using the function ga is convenient if you want to

• Return results directly to the MATLAB® workspace

• Run the genetic algorithm multiple times with different options, by calling
ga from an M-file

“Using the Genetic Algorithm from the Command Line” on page 6-12 provides
a detailed description of using the function ga and creating the options
structure.
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Using the Optimization Tool
To open the Optimization Tool, enter

optimtool('ga')

at the command line, or enter optimtool and then choose ga from the Solver
menu.
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You can also launch the tool from the MATLAB Start menu as pictured:
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3 Getting Started with the Genetic Algorithm

To use the Optimization Tool, you must first enter the following information:

• Fitness function — The objective function you want to minimize. Enter
the fitness function in the form @fitnessfun, where fitnessfun.m is an
M-file that computes the fitness function. “Writing M-Files for Functions
You Want to Optimize” on page 1-3 explains how write this M-file. The @
sign creates a function handle to fitnessfun.

3-6



Performing a Genetic Algorithm Optimization

• Number of variables — The length of the input vector to the fitness
function. For the function my_fun described in “Writing M-Files for
Functions You Want to Optimize” on page 1-3, you would enter 2.

You can enter constraints or a nonlinear constraint function for the problem
in the Constraints pane. If the problem is unconstrained, leave these fields
blank.

To run the genetic algorithm, click the Start button. The tool displays the
results of the optimization in the Run solver and view results pane.

You can change the options for the genetic algorithm in the Options pane.
To view the options in one of the categories listed in the pane, click the +
sign next to it.

For more information,

• See the “Optimization Tool” chapter in the Optimization Toolbox™ User’s
Guide.

• See “Example: Rastrigin’s Function” on page 3-8 for an example of using
the tool.
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Example: Rastrigin’s Function

In this section...

“Rastrigin’s Function” on page 3-8

“Finding the Minimum of Rastrigin’s Function” on page 3-10

“Finding the Minimum from the Command Line” on page 3-12

“Displaying Plots” on page 3-13

Rastrigin’s Function
This section presents an example that shows how to find the minimum of
Rastrigin’s function, a function that is often used to test the genetic algorithm.

For two independent variables, Rastrigin’s function is defined as

Ras x x x x x( ) cos cos .= + + − +( )20 10 2 21
2

2
2

1 2π π

Genetic Algorithm and Direct Search Toolbox™ software contains an M-file,
rastriginsfcn.m, that computes the values of Rastrigin’s function. The
following figure shows a plot of Rastrigin’s function.
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As the plot shows, Rastrigin’s function has many local minima—the “valleys”
in the plot. However, the function has just one global minimum, which occurs
at the point [0 0] in the x-y plane, as indicated by the vertical line in the plot,
where the value of the function is 0. At any local minimum other than [0
0], the value of Rastrigin’s function is greater than 0. The farther the local
minimum is from the origin, the larger the value of the function is at that
point.

Rastrigin’s function is often used to test the genetic algorithm, because its
many local minima make it difficult for standard, gradient-based methods
to find the global minimum.

The following contour plot of Rastrigin’s function shows the alternating
maxima and minima.
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Finding the Minimum of Rastrigin’s Function
This section explains how to find the minimum of Rastrigin’s function using
the genetic algorithm.

Note Because the genetic algorithm uses random number generators, the
algorithm returns slightly different results each time you run it.

To find the minimum, do the following steps:

1 Enter optimtool('ga') at the command line to open the Optimization
Tool.

2 Enter the following in the Optimization Tool:
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Example: Rastrigin’s Function

• In the Fitness function field, enter @rastriginsfcn.

• In the Number of variables field, enter 2, the number of independent
variables for Rastrigin’s function.

The Fitness function and Number of variables fields should appear
as shown in the following figure.

3 Click the Start button in the Run solver and view results pane, as
shown in the following figure.

While the algorithm is running, the Current iteration field displays the
number of the current generation. You can temporarily pause the algorithm
by clicking the Pause button. When you do so, the button name changes
to Resume. To resume the algorithm from the point at which you paused
it, click Resume.

When the algorithm is finished, the Run solver and view results pane
appears as shown in the following figure.

The Run solver and view results pane displays the following
information:
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• The final value of the fitness function when the algorithm terminated:

Objective function value: 0.04951026725527896

Note that the value shown is very close to the actual minimum value
of Rastrigin’s function, which is 0. “Genetic Algorithm Examples” on
page 6-22 describes some ways to get a result that is closer to the actual
minimum.

• The reason the algorithm terminated.

Optimization terminated:
average change in the fitness value less than options.TolFun.

• The final point, which in this example is [0.003 0.015].

Finding the Minimum from the Command Line
To find the minimum of Rastrigin’s function from the command line, enter

[x fval exitflag] = ga(@rastriginsfcn, 2)

This returns
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Optimization terminated:
average change in the fitness value less than options.TolFun.

x =

0.0229 0.0106

fval =

0.1258

exitflag =

1

where

• x is the final point returned by the algorithm.

• fval is the fitness function value at the final point.

• exitflag is integer value corresponding to the reason that the algorithm
terminated.

Note Because the genetic algorithm uses random number generators, the
algorithm returns slightly different results each time you run it.

Displaying Plots
The Plot functions pane enables you to display various plots that provide
information about the genetic algorithm while it is running. This information
can help you change options to improve the performance of the algorithm. For
example, to plot the best and mean values of the fitness function at each
generation, select the box next to Best fitness, as shown in the following
figure.
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When you click Start, the Optimization Tool displays a plot of the best and
mean values of the fitness function at each generation. When the algorithm
stops, the plot appears as shown in the following figure.

The points at the bottom of the plot denote the best fitness values, while
the points above them denote the averages of the fitness values in each
generation. The plot also displays the best and mean values in the current
generation numerically at the top.

To get a better picture of how much the best fitness values are decreasing, you
can change the scaling of the y-axis in the plot to logarithmic scaling. To do so,
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1 Select Axes Properties from the Edit menu in the plot window to open
the Property Editor attached to your figure window as shown below.

2 Click the Y Axis tab.

3 In the Y Scale pane, select Log.

The plot now appears as shown in the following figure.
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Best: 0.0067796 Mean: 0.014788

Typically, the best fitness value improves rapidly in the early generations,
when the individuals are farther from the optimum. The best fitness value
improves more slowly in later generations, whose populations are closer
to the optimal point.
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Some Genetic Algorithm Terminology

In this section...

“Fitness Functions” on page 3-17

“Individuals” on page 3-17

“Populations and Generations” on page 3-18

“Diversity” on page 3-18

“Fitness Values and Best Fitness Values” on page 3-18

“Parents and Children” on page 3-19

Fitness Functions
The fitness function is the function you want to optimize. For standard
optimization algorithms, this is known as the objective function. The toolbox
software tries to find the minimum of the fitness function.

You can write the fitness function as an M-file and pass it as a function handle
input argument to the main genetic algorithm function.

Individuals
An individual is any point to which you can apply the fitness function. The
value of the fitness function for an individual is its score. For example, if
the fitness function is

f x x x x x x1 2 3 1
2

2
2

3
22 1 3 4 2, , ,( ) = +( ) + +( ) + −( )

the vector (2, -3, 1), whose length is the number of variables in the problem, is
an individual. The score of the individual (2, –3, 1) is f(2, –3, 1) = 51.

An individual is sometimes referred to as a genome and the vector entries of
an individual as genes.
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Populations and Generations
A population is an array of individuals. For example, if the size of the
population is 100 and the number of variables in the fitness function is 3,
you represent the population by a 100-by-3 matrix. The same individual can
appear more than once in the population. For example, the individual (2, -3,
1) can appear in more than one row of the array.

At each iteration, the genetic algorithm performs a series of computations
on the current population to produce a new population. Each successive
population is called a new generation.

Diversity
Diversity refers to the average distance between individuals in a population.
A population has high diversity if the average distance is large; otherwise it
has low diversity. In the following figure, the population on the left has high
diversity, while the population on the right has low diversity.

Diversity is essential to the genetic algorithm because it enables the algorithm
to search a larger region of the space.

Fitness Values and Best Fitness Values
The fitness value of an individual is the value of the fitness function for that
individual. Because the toolbox software finds the minimum of the fitness
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function, the best fitness value for a population is the smallest fitness value
for any individual in the population.

Parents and Children
To create the next generation, the genetic algorithm selects certain individuals
in the current population, called parents, and uses them to create individuals
in the next generation, called children. Typically, the algorithm is more likely
to select parents that have better fitness values.
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How the Genetic Algorithm Works

In this section...

“Outline of the Algorithm” on page 3-20

“Initial Population” on page 3-21

“Creating the Next Generation” on page 3-22

“Plots of Later Generations” on page 3-24

“Stopping Conditions for the Algorithm” on page 3-24

Outline of the Algorithm
The following outline summarizes how the genetic algorithm works:

1 The algorithm begins by creating a random initial population.

2 The algorithm then creates a sequence of new populations. At each step,
the algorithm uses the individuals in the current generation to create the
next population. To create the new population, the algorithm performs
the following steps:

a Scores each member of the current population by computing its fitness
value.

b Scales the raw fitness scores to convert them into a more usable range of
values.

c Selects members, called parents, based on their fitness.

d Some of the individuals in the current population that have lower fitness
are chosen as elite. These elite individuals are passed to the next
population.

e Produces children from the parents. Children are produced either by
making random changes to a single parent—mutation—or by combining
the vector entries of a pair of parents—crossover.

f Replaces the current population with the children to form the next
generation.
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3 The algorithm stops when one of the stopping criteria is met. See “Stopping
Conditions for the Algorithm” on page 3-24.

Initial Population
The algorithm begins by creating a random initial population, as shown in
the following figure.
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Initial population

In this example, the initial population contains 20 individuals, which is the
default value of Population size in the Population options. Note that all
the individuals in the initial population lie in the upper-right quadrant of the
picture, that is, their coordinates lie between 0 and 1, because the default
value of Initial range in the Population options is [0;1].

If you know approximately where the minimal point for a function lies, you
should set Initial range so that the point lies near the middle of that range.
For example, if you believe that the minimal point for Rastrigin’s function is
near the point [0 0], you could set Initial range to be [-1;1]. However, as
this example shows, the genetic algorithm can find the minimum even with a
less than optimal choice for Initial range.

3-21



3 Getting Started with the Genetic Algorithm

Creating the Next Generation
At each step, the genetic algorithm uses the current population to create the
children that make up the next generation. The algorithm selects a group of
individuals in the current population, called parents, who contribute their
genes—the entries of their vectors—to their children. The algorithm usually
selects individuals that have better fitness values as parents. You can specify
the function that the algorithm uses to select the parents in the Selection
function field in the Selection options.

The genetic algorithm creates three types of children for the next generation:

• Elite children are the individuals in the current generation with the
best fitness values. These individuals automatically survive to the next
generation.

• Crossover children are created by combining the vectors of a pair of parents.

• Mutation children are created by introducing random changes, or
mutations, to a single parent.

The following schematic diagram illustrates the three types of children.
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“Mutation and Crossover” on page 6-35 explains how to specify the number of
children of each type that the algorithm generates and the functions it uses
to perform crossover and mutation.

The following sections explain how the algorithm creates crossover and
mutation children.

Crossover Children
The algorithm creates crossover children by combining pairs of parents in
the current population. At each coordinate of the child vector, the default
crossover function randomly selects an entry, or gene, at the same coordinate
from one of the two parents and assigns it to the child.

Mutation Children
The algorithm creates mutation children by randomly changing the genes of
individual parents. By default, the algorithm adds a random vector from a
Gaussian distribution to the parent.

The following figure shows the children of the initial population, that is, the
population at the second generation, and indicates whether they are elite,
crossover, or mutation children.
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Plots of Later Generations
The following figure shows the populations at iterations 60, 80, 95, and 100.
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Iteration 100

As the number of generations increases, the individuals in the population get
closer together and approach the minimum point [0 0].

Stopping Conditions for the Algorithm
The genetic algorithm uses the following conditions to determine when to stop:

• Generations — The algorithm stops when the number of generations
reaches the value of Generations.
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• Time limit — The algorithm stops after running for an amount of time in
seconds equal to Time limit.

• Fitness limit — The algorithm stops when the value of the fitness function
for the best point in the current population is less than or equal to Fitness
limit.

• Stall generations — The algorithm stops when the weighted average
change in the fitness function value over Stall generations is less than
Function tolerance.

• Stall time limit — The algorithm stops if there is no improvement in
the objective function during an interval of time in seconds equal to Stall
time limit.

• Function Tolerance — The algorithm runs until the weighted average
change in the fitness function value over Stall generations is less than
Function tolerance.

• Nonlinear constraint tolerance — The Nonlinear constraint
tolerance is not used as stopping criterion. It is used to determine the
feasibility with respect to nonlinear constraints.

The algorithm stops as soon as any one of these conditions is met. You can
specify the values of these criteria in the Stopping criteria pane in the
Optimization Tool. The default values are shown in the pane.

3-25



3 Getting Started with the Genetic Algorithm

When you run the genetic algorithm, the Run solver and view results
panel displays the criterion that caused the algorithm to stop.

The options Stall time limit and Time limit prevent the algorithm from
running too long. If the algorithm stops due to one of these conditions, you
might improve your results by increasing the values of Stall time limit and
Time limit.
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Description of the Nonlinear Constraint Solver
The genetic algorithm uses the Augmented Lagrangian Genetic Algorithm
(ALGA) to solve nonlinear constraint problems. The optimization problem
solved by the ALGA algorithm is

min ( )
x

f x

such that

c x i m

ceq x i m mt

A x b
Aeq x beq

lb x ub

i
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= = +
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0 1
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…
…

where c(x) represents the nonlinear inequality constraints, ceq(x) represents
the equality constraints, m is the number of nonlinear inequality constraints,
and mt is the total number of nonlinear constraints.

The Augmented Lagrangian Genetic Algorithm (ALGA) attempts to solve a
nonlinear optimization problem with nonlinear constraints, linear constraints,
and bounds. In this approach, bounds and linear constraints are handled
separately from nonlinear constraints. A subproblem is formulated by
combining the fitness function and nonlinear constraint function using the
Lagrangian and the penalty parameters. A sequence of such optimization
problems are approximately minimized using the genetic algorithm such that
the linear constraints and bounds are satisfied.

A subproblem formulation is defined as

Θ( , , , ) ( ) log( ( )) ( )x s f x s s c x c x ci
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iλ ρ λ λ
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x
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∑

1

2( ) ,

where the components λ i of the vector λ are nonnegative and are known as
Lagrange multiplier estimates. The elements si of the vector s are nonnegative
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shifts, and ρ is the positive penalty parameter. The algorithm begins by using
an initial value for the penalty parameter (InitialPenalty).

The genetic algorithm minimizes a sequence of the subproblem, which is an
approximation of the original problem. When the subproblem is minimized
to a required accuracy and satisfies feasibility conditions, the Lagrangian
estimates are updated. Otherwise, the penalty parameter is increased
by a penalty factor (PenaltyFactor). This results in a new subproblem
formulation and minimization problem. These steps are repeated until the
stopping criteria are met. For a complete description of the algorithm, see the
following references:

• Conn, A. R., N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent
Augmented Lagrangian Algorithm for Optimization with General
Constraints and Simple Bounds,” SIAM Journal on Numerical Analysis,
Volume 28, Number 2, pages 545–572, 1991.

• Conn, A. R., N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent
Augmented Lagrangian Barrier Algorithm for Optimization with General
Inequality Constraints and Simple Bounds,” Mathematics of Computation,
Volume 66, Number 217, pages 261–288, 1997.
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What Are Simulated Annealing and Threshold Acceptance?
Simulated annealing is a method for solving unconstrained and
bound-constrained optimization problems. The method models the physical
process of heating a material and then slowly lowering the temperature to
decrease defects, thus minimizing the system energy.

At each iteration of the simulated annealing algorithm, a new point is
randomly generated. The distance of the new point from the current point, or
the extent of the search, is based on a probability distribution with a scale
proportional to the temperature. The algorithm accepts all new points that
lower the objective, but also, with a certain probability, points that raise the
objective. By accepting points that raise the objective, the algorithm avoids
being trapped in local minima, and is able to explore globally for more possible
solutions. An annealing schedule is selected to systematically decrease the
temperature as the algorithm proceeds. As the temperature decreases, the
algorithm reduces the extent of its search to converge to a minimum.

Threshold acceptance uses a similar approach, but instead of accepting
new points that raise the objective with a certain probability, it accepts all
new points below a fixed threshold. The threshold is then systematically
lowered, just as the temperature is lowered in an annealing schedule.
Because threshold acceptance avoids the probabilistic acceptance calculations
of simulated annealing, it may locate an optimizer faster than simulated
annealing.
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Performing a Simulated Annealing or Threshold
Acceptance Optimization

Calling simulannealbnd and threshacceptbnd at the
Command Line
This section provides a brief introduction to using the simulated annealing
and threshold acceptance at the command line. To simplify the presentation,
this section uses only the simulated annealing function simulannealbnd. The
threshold acceptance function threshacceptbnd has the same syntax.

To call the simulated annealing function at the command line, use the syntax

[x fval] = simulannealbnd(@objfun,x0,lb,ub,options)

where

• @objfun is a function handle to the objective function.

• x0 is an initial guess for the optimizer.

• lb and ub are lower and upper bound constraints, respectively, on x.

• options is a structure containing options for the algorithm. If you do not
pass in this argument, simulannealbnd uses its default options.

The results are given by:

• x — Final point returned by the solver

• fval — Value of the objective function at x

The command-line function simulannealbnd is convenient if you want to

• Return results directly to the MATLAB® workspace.

• Run the simulated annealing algorithm multiple times with different
options by calling simulannealbnd from an M-file.

“Using the Simulated Annealing and Threshold Acceptance Algorithms from
the Command Line” on page 7-2 provides a detailed description of using the
function simulannealbnd and creating the options structure.
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Using the Optimization Tool
This section provides a brief introduction to using the simulated annealing
and threshold acceptance using the Optimization Tool. To simplify the
presentation, this section uses only the simulated annealing function
simulannealbnd. The threshold acceptance function threshacceptbnd has
the same syntax.

To open the Optimization Tool, enter

optimtool('simulannealbnd')

at the command line, or enter optimtool and then choose simulannealbnd
from the Solver menu.
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You can also launch the tool from the MATLAB Start menu as pictured:
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To use the Optimization Tool, you must first enter the following information:

• Objective function — The objective function you want to minimize. Enter
the fitness function in the form @fitnessfun, where fitnessfun.m is an
M-file that computes the objective function. “Writing M-Files for Functions
You Want to Optimize” on page 1-3 explains how write this M-file. The @
sign creates a function handle to fitnessfun.
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• Number of variables — The length of the input vector to the fitness
function. For the function my_fun described in “Writing M-Files for
Functions You Want to Optimize” on page 1-3, you would enter 2.

You can enter bounds for the problem in the Constraints pane. If the
problem is unconstrained, leave these fields blank.

To run the simulated annealing algorithm, click the Start button. The tool
displays the results of the optimization in the Run solver and view results
pane.

You can change the options for the simulated annealing algorithm in the
Options pane. To view the options in one of the categories listed in the pane,
click the + sign next to it.

For more information,

• See the “Optimization Tool” chapter in the Optimization Toolbox™ User’s
Guide.

• See “Minimizing Using the Optimization Tool” on page 4-9 for an example
of using the tool with the function simulannealbnd.
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Example: Minimizing De Jong’s Fifth Function

In this section...

“Description” on page 4-8

“Minimizing at the Command Line” on page 4-9

“Minimizing Using the Optimization Tool” on page 4-9

Description
This section presents an example that shows how to find the minimum of the
function using simulated annealing.

De Jong’s fifth function is a two-dimensional function with many (25) local
minima:

dejong5fcn
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Many standard optimization algorithms get stuck in local minima. Because
the simulated annealing algorithm performs a wide random search, the
chance of being trapped in local minima is decreased.

Note Because simulated annealing and threshold acceptance both use
random number generators, each time you run these algorithms you may
get different results. See “Reproducing Your Results” on page 7-5 for more
information.

Minimizing at the Command Line
To run the simulated annealing algorithm without constraints, call
simulannealbnd at the command line using the objective function in
dejong5fcn.m, referenced by anonymous function pointer:

fun = @dejong5fcn;
[x fval] = simulannealbnd(fun, [0 0])

This returns

x =
-31.9779 -31.9595

fval =
0.9980

where

• x is the final point returned by the algorithm.

• fval is the objective function value at the final point.

Minimizing Using the Optimization Tool
To run the minimization using the Optimization Tool,

1 Set up your problem as pictured in the Optimization Tool
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2 Click Start under Run solver and view results:
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Some Simulated Annealing and Threshold Acceptance
Terminology

In this section...

“Objective Function” on page 4-11

“Temperature” on page 4-11

“Annealing Schedule” on page 4-11

“Reannealing” on page 4-11

Objective Function
The objective function is the function you want to optimize. Genetic Algorithm
and Direct Search Toolbox™ algorithms attempt to find the minimum of the
objective function. Write the objective function as an M-file and pass it to the
solver as afunction handle.

Temperature
The temperature is the control parameter in simulated annealing that is
decreased gradually as the algorithm proceeds. It determines the probability
of accepting a worse solution at any step and is used to limit the extent of the
search in a given dimension. You can specify the initial temperature as an
integer in the InitialTemperature option, and the annealing schedule as a
function to the TemperatureFcn option.

Annealing Schedule
The annealing schedule is the rate by which the temperature is decreased
as the algorithm proceeds. The slower the rate of decrease, the better the
chances are of finding an optimal solution, but the longer the run time.
You can specify the temperature schedule as a function handle with the
TemperatureFcn option.

Reannealing
Annealing is the technique of closely controlling the temperature when cooling
a material to ensure that it is brought to an optimal state. Reannealing raises
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the temperature after a certain number of new points have been accepted,
and starts the search again at the higher temperature. Reannealing avoids
getting caught at local minima. You specify the reannealing schedule with the
ReannealInterval option.
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How Simulated Annealing and Threshold Acceptance
Work

In this section...

“Outline of the Algorithm” on page 4-13

“Stopping Conditions for the Algorithm” on page 4-14

Outline of the Algorithm
The following is an outline of the steps performed for both the simulated
annealing and threshold acceptance algorithms:

1 The algorithm begins by randomly generating a new point. The distance
of the new point from the current point, or the extent of the search, is
determined by a probability distribution with a scale proportional to the
current temperature.

2 The algorithm determines whether the new point is better or worse than
the current point. If the new point is better than the current point, it
becomes the next point. If the new point is worse than the current point,
the algorithm may still make it the next point. Simulated annealing
accepts a worse point based on an acceptance probability. Threshold
acceptance accepts a worse point if the objective function is raised by less
than a fixed threshold.

3 The algorithm systematically lowers the temperature and (for threshold
acceptance) the threshold, storing the best point found so far.

4 Reannealing is performed after a certain number of points
(ReannealInterval) are accepted by the solver. Reannealing raises the
temperature in each dimension, depending on sensitivity information. The
search is resumed with the new temperature values.

5 The algorithm stops when the average change in the objective function is
very small, or when any other stopping criteria are met. See “Stopping
Conditions for the Algorithm” on page 4-14.
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Stopping Conditions for the Algorithm
The simulated annealing and threshold acceptance algorithms use the
following conditions to determine when to stop:

• TolFun — The algorithm runs until the average change in value of the
objective function in StallIterLim iterations is less than TolFun. The
default value is 1e-6.

• MaxIter — The algorithm stops if the number of iterations exceeds this
maximum number of iterations. You can specify the maximum number of
iterations as a positive integer or Inf. Inf is the default.

• MaxFunEval specifies the maximum number of evaluations of the objective
function. The algorithm stops if the number of function evaluations exceeds
the maximum number of function evaluations. The default maximum is
3000*numberofvariables.

• TimeLimit specifies the maximum time in seconds the algorithm runs
before stopping.

• ObjectiveLimit — The algorithm stops if the best objective function value
is less than or equal to the value of ObjectiveLimit.
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Performing a Pattern Search Using the Optimization Tool
GUI

In this section...

“Example — A Linearly Constrained Problem” on page 5-2

“Displaying Plots” on page 5-5

“Example — Working with a Custom Plot Function” on page 5-6

Example — A Linearly Constrained Problem
This section presents an example of performing a pattern search on a
constrained minimization problem. The example minimizes the function

F x x Hx f xT T( ) ,= +1
2

where

H =

36 17 19 12 8 15
17 33 18 11 7 14
19 18 43 13 8 16
12 11 13 18 6 11
8 7 8 6 9 8

15 14 16 111 8 29

20 15 21 18 29 24
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⎣
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⎢
⎢
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⎤

⎦

⎥
⎥
⎥
⎥
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⎥
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=
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[ ],f

subject to the constraints

A x b
Aeq x beq

⋅ ≤
⋅ =

,
,

where
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A
b
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7

7 1 8 3 3 3
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⎥⎥
⎥
⎥

=

,

[ ].beq 84 62 65 1

Performing a Pattern Search on the Example
To perform a pattern search on the example, first enter

optimtool('patternsearch')

to open the Optimization Tool, or enter optimtool and then choose
patternsearch from the Solver menu. Then type the following function in
the Objective function field:

@lincontest7

This is an M-file included in Genetic Algorithm and Direct Search Toolbox™
software that computes the objective function for the example. Because the
matrices and vectors defining the starting point and constraints are large, it is
more convenient to set their values as variables in the MATLAB® workspace
first and then enter the variable names in the Optimization Tool. To do so,
enter

x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = [7];
Aeq = [7 1 8 3 3 3; 5 0 5 1 5 8; 2 6 7 1 1 8; 1 0 0 0 0 0];
beq = [84 62 65 1];

Then, enter the following in the Optimization Tool:

• Set Start point to x0.

• Set the following Linear inequalities:

- Set A to Aineq.
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- Set b to bineq.

- Set Aeq to Aeq.

- Set beq to beq.

The following figure shows these settings in the Optimization Tool.

Then click Start to run the pattern search. When the search is finished, the
results are displayed in Run solver and view results pane, as shown in
the following figure.
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Displaying Plots
The Plot functions pane, shown in the following figure, enables you to
display various plots of the results of a pattern search.

Select the check boxes next to the plots you want to display. For example, if you
select Best function value and Mesh size, and run the example described
in “Example: Finding the Minimum of a Function Using the GPS Algorithm”
on page 2-7, the tool displays the plots shown in the following figure.
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The upper plot displays the objective function value at each iteration. The
lower plot displays the mesh size at each iteration.

Note When you display more than one plot, clicking on any plot while the
pattern search is running or after the solver has completed opens a larger
version of the plot in a separate window.

“Plot Options” on page 9-24 describes the types of plots you can create.

Example — Working with a Custom Plot Function
To use a plot function other than those included with the software, you can
write your own custom plot function that is called at each iteration of the
pattern search to create the plot. This example shows how to create a plot
function that displays the logarithmic change in the best objective function
value from the previous iteration to the current iteration.

This section covers the following topics:

• “Creating the Custom Plot Function” on page 5-7
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• “Using the Custom Plot Function” on page 5-8

• “How the Plot Function Works” on page 5-9

Creating the Custom Plot Function
To create the plot function for this example, copy and paste the following code
into a new M-file in the MATLAB Editor.

function stop = psplotchange(optimvalues, flag)

% PSPLOTCHANGE Plots the change in the best objective function

% value from the previous iteration.

% Best objective function value in the previous iteration

persistent last_best

stop = false;

if(strcmp(flag,'init'))

set(gca,'Yscale','log'); %Set up the plot

hold on;

xlabel('Iteration');

ylabel('Log Change in Values');

title(['Change in Best Function Value']);

end

% Best objective function value in the current iteration

best = min(optimvalues.fval);

% Set last_best to best

if optimvalues.iteration == 0

last_best = best;

else

%Change in objective function value

change = last_best - best;

plot(optimvalues.iteration, change, '.r');

end

Then save the M-file as psplotchange.m in a directory on the MATLAB path.
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Using the Custom Plot Function
To use the custom plot function, select Custom function in the Plot
functions pane and enter @psplotchange in the field to the right. To
compare the custom plot with the best function value plot, also select Best
function value. Now, when you run the example described in “Example — A
Linearly Constrained Problem” on page 5-2, the pattern search tool displays
the plots shown in the following figure.

Note that because the scale of the y-axis in the lower custom plot is
logarithmic, the plot will only show changes that are greater than 0. The
logarithmic scale shows small changes in the objective function that the upper
plot does not reveal.
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How the Plot Function Works
The plot function uses information contained in the following structures,
which the Optimization Tool passes to the function as input arguments:

• optimvalues — Structure containing the current state of the solver

• flag — String indicating the current status of the algorithm

The most important statements of the custom plot function, psplotchange.m,
are summarized in the following table.

Custom Plot Function Statements

M-File Statement Description

persistent last_best Creates the persistent variable
last_best, the best objective
function value in the previous
generation. Persistent variables are
preserved over multiple calls to the
plot function.

set(gca,'Yscale','log') Sets up the plot before the algorithm
starts.

best = min(optimvalues.fval) Sets best equal to the minimum
objective function value. The field
optimvalues.fval contains the
objective function value in the
current iteration. The variable best
is the minimum objective function
value. For a complete description
of the fields of the structure
optimvalues, see “Structure of the
Plot Functions” on page 9-4.
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Custom Plot Function Statements (Continued)

M-File Statement Description

change = last_best - best Sets the variable change to the
best objective function value at
the previous iteration minus the
best objective function value in the
current iteration.

plot(optimvalues.iteration,
change, '.r')

Plots the variable change at the
current objective function value, for
the current iteration contained in
optimvalues.iteration.
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Performing a Pattern Search from the Command Line

In this section...

“Calling patternsearch with the Default Options” on page 5-11

“Setting Options for patternsearch at the Command Line” on page 5-13

“Using Options and Problems from the Optimization Tool” on page 5-15

Calling patternsearch with the Default Options
This section describes how to perform a pattern search with the default
options.

Pattern Search on Unconstrained Problems
For an unconstrained problem, call patternsearch with the syntax

[x fval] = patternsearch(@objectfun, x0)

The output arguments are

• x — The final point

• fval — The value of the objective function at x

The required input arguments are

• @objectfun — A function handle to the objective function objectfun,
which you can write as an M-file. See “Writing M-Files for Functions You
Want to Optimize” on page 1-3 to learn how to do this.

• x0 — The initial point for the pattern search algorithm.

As an example, you can run the example described in “Example: Finding
the Minimum of a Function Using the GPS Algorithm” on page 2-7 from the
command line by entering

[x fval] = patternsearch(@ps_example, [2.1 1.7])

This returns
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Optimization terminated: mesh size less than options.TolMesh.

x =

-4.7124 -0.0000

fval =

-2.0000

Pattern Search on Constrained Problems
If your problem has constraints, use the syntax

[x fval] = patternsearch(@objfun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

where

• A is a matrix and b is vector that represent inequality constraints of the
form A·x ≤ b.

• Aeq is a matrix and beq is a vector that represent equality constraints of
the form Aeq·x = beq.

• lb and ub are vectors representing bound constraints of the form lb ≤ x and
x ≤ ub, respectively.

• nonlcon is a function that returns the nonlinear equality and inequality
vectors, c and ceq, respectively. The function is minimized such that c(x) ≤ 0
and ceq(x) = 0.

You only need to pass in the constraints that are part of the problem. For
example, if there are no bound constraints or a nonlinear constraint function,
use the syntax

[x fval] = patternsearch(@objfun,x0,A,b,Aeq,beq)

Use empty brackets [] for constraint arguments that are not needed for the
problem. For example, if there are no inequality constraints or a nonlinear
constraint function, use the syntax
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[x fval] = patternsearch(@objfun,x0,[],[],Aeq,beq,lb,ub)

Additional Output Arguments
To get more information about the performance of the pattern search, you can
call patternsearch with the syntax

[x fval exitflag output] = patternsearch(@objfun,x0)

Besides x and fval, this returns the following additional output arguments:

• exitflag — Integer indicating whether the algorithm was successful

• output — Structure containing information about the performance of the
solver

See the reference page for patternsearch for more information about these
arguments.

Setting Options for patternsearch at the Command
Line
You can specify any available patternsearch options by passing an options
structure as an input argument to patternsearch using the syntax

[x fval] = patternsearch(@fitnessfun,nvars, ...
A,b,Aeq,beq,lb,ub,nonlcon,options)

Pass in empty brackets [] for any constraints that do not appear in the
problem.

You create the options structure using the function psoptimset.

options = psoptimset(@patternsearch)

This returns the options structure with the default values for its fields.

options =
TolMesh: 1.0000e-006
TolCon: 1.0000e-006

TolX: 1.0000e-006
TolFun: 1.0000e-006
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TolBind: 1.0000e-003
MaxIter: '100*numberofvariables'

MaxFunEvals: '2000*numberofvariables'
TimeLimit: Inf

MeshContraction: 0.5000
MeshExpansion: 2

MeshAccelerator: 'off'
MeshRotate: 'on'

InitialMeshSize: 1
ScaleMesh: 'on'

MaxMeshSize: Inf
InitialPenalty: 10
PenaltyFactor: 100

PollMethod: 'gpspositivebasis2n'
CompletePoll: 'off'
PollingOrder: 'consecutive'
SearchMethod: []

CompleteSearch: 'off'
Display: 'final'

OutputFcns: []
PlotFcns: []

PlotInterval: 1
Cache: 'off'

CacheSize: 10000
CacheTol: 2.2204e-016

Vectorized: 'off'
UseParallel: 'never'

The function patternsearch uses these default values if you do not pass
in options as an input argument.

The value of each option is stored in a field of the options structure, such as
options.MeshExpansion. You can display any of these values by entering
options followed by the name of the field. For example, to display the mesh
expansion factor for the pattern search, enter
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options.MeshExpansion

ans =

2

To create an options structure with a field value that is different from the
default, use the function psoptimset. For example, to change the mesh
expansion factor to 3 instead of its default value 2, enter

options = psoptimset('MeshExpansion', 3)

This creates the options structure with all values set to their defaults except
for MeshExpansion, which is set to 3.

If you now call patternsearch with the argument options, the pattern
search uses a mesh expansion factor of 3.

If you subsequently decide to change another field in the options structure,
such as setting PlotFcns to @psplotmeshsize, which plots the mesh size at
each iteration, call psoptimset with the syntax

options = psoptimset(options, 'PlotFcns', @psplotmeshsize)

This preserves the current values of all fields of options except for PlotFcns,
which is changed to @plotmeshsize. Note that if you omit the options input
argument, psoptimset resets MeshExpansion to its default value, which is 2.

You can also set both MeshExpansion and PlotFcns with the single command

options = psoptimset('MeshExpansion',3,'PlotFcns',@plotmeshsize)

Using Options and Problems from the Optimization
Tool
As an alternative to creating the options structure using psoptimset, you can
set the values of options in the Optimization Tool and then export the options
to a structure in the MATLAB® workspace, as described in the “Importing and
Exporting Your Work” section of the Optimization Toolbox™ User’s Guide.
If you export the default options in the Optimization Tool, the resulting
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options structure has the same settings as the default structure returned
by the command

options = psoptimset

except for the default value of 'Display', which is 'final' when created by
psoptimset, but 'none' when created in the Optimization Tool.

You can also export an entire problem from the Optimization Tool and run it
from the command line. Enter

patternsearch(problem)

where problem is the name of the exported problem.
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Pattern Search Examples: Setting Options

In this section...

“Poll Method” on page 5-17

“Complete Poll” on page 5-19

“Using a Search Method” on page 5-23

“Mesh Expansion and Contraction” on page 5-26

“Mesh Accelerator” on page 5-31

“Using Cache” on page 5-32

“Setting Tolerances for the Solver” on page 5-34

“Constrained Minimization Using patternsearch” on page 5-39

“Vectorizing the Objective and Constraint Functions” on page 5-42

Note All examples use the generalized pattern search (GPS) algorithm, but
can be applied to the MADS algorithm as well.

Poll Method
At each iteration, the pattern search polls the points in the current
mesh—that is, it computes the objective function at the mesh points to see
if there is one whose function value is less than the function value at the
current point. “How Pattern Search Works” on page 2-15 provides an example
of polling. You can specify the pattern that defines the mesh by the Poll
method option. The default pattern, GPS Positive basis 2N, consists of the
following 2N directions, where N is the number of independent variables for
the objective function.

[1 0 0...0]
[0 1 0...0]
...
[0 0 0...1]
[–1 0 0...0]
[0 –1 0...0]
[0 0 0...–1].
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For example, if the objective function has three independent variables, the
GPS Positive basis 2N, consists of the following six vectors.

[1 0 0]
[0 1 0]
[0 0 1]
[–1 0 0]
[0 –1 0]
[0 0 –1].

Alternatively, you can set Poll method to GPS Positive basis NP1, the
pattern consisting of the following N + 1 directions.

[1 0 0...0]
[0 1 0...0]
...
[0 0 0...1]
[–1 –1 –1...–1].

For example, if objective function has three independent variables, the GPS
Positive basis Np1, consists of the following four vectors.

[1 0 0]
[0 1 0]
[0 0 1]
[–1 –1 –1].

A pattern search will sometimes run faster using GPS Positive basis Np1
rather than the GPS Positive basis 2N as the Poll method, because
the algorithm searches fewer points at each iteration. Although not being
addressed in this example, the same is true when using the MADS Positive
basis Np1 over the MADS Positive basis 2N. For example, if you run
a pattern search on the example described in “Example — A Linearly
Constrained Problem” on page 5-2, the algorithm performs 2080 function
evaluations with GPS Positive basis 2N, the default Poll method, but only
1413 function evaluations using GPS Positive basis Np1.

However, if the objective function has many local minima, using GPS Positive
basis 2N as the Poll method might avoid finding a local minimum that is
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not the global minimum, because the search explores more points around
the current point at each iteration.

Complete Poll
By default, if the pattern search finds a mesh point that improves the value
of the objective function, it stops the poll and sets that point as the current
point for the next iteration. When this occurs, some mesh points might not get
polled. Some of these unpolled points might have an objective function value
that is even lower than the first one the pattern search finds.

For problems in which there are several local minima, it is sometimes
preferable to make the pattern search poll all the mesh points at each
iteration and choose the one with the best objective function value. This
enables the pattern search to explore more points at each iteration and
thereby potentially avoid a local minimum that is not the global minimum.
You can make the pattern search poll the entire mesh setting Complete poll
to On in Poll options.

Example — Using a Complete Poll in a Generalized Pattern
Search
As an example, consider the following function.

f x x

x x x x

x x x x1 2
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2

2
2
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2
2
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2
2
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9 16,( ) =

+ − + ≤

+ −( ) − + −

for 

for 99 16
0

2( ) ≤

⎧

⎨
⎪⎪

⎩
⎪
⎪ otherwise.

The following figure shows a plot of the function.
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The global minimum of the function occurs at (0, 0), where its value is -25.
However, the function also has a local minimum at (0, 9), where its value is
-16.

To create an M-file that computes the function, copy and paste the following
code into a new M-file in the MATLAB® Editor.

function z = poll_example(x)
if x(1)^2 + x(2)^2 <= 25

z = x(1)^2 + x(2)^2 - 25;
elseif x(1)^2 + (x(2) - 9)^2 <= 16

z = x(1)^2 + (x(2) - 9)^2 - 16;
else z = 0;
end

Then save the file as poll_example.m in a directory on the MATLAB path.
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To run a pattern search on the function, enter the following in the
Optimization Tool:

• Set Solver to patternsearch.

• Set Objective function to @poll_example.

• Set Start point to [0 5].

• Set Level of display to Iterative in the Display to command window
options.

Click Start to run the pattern search with Complete poll set to Off, its
default value. The Optimization Tool displays the results in the Run solver
and view results pane, as shown in the following figure.

The pattern search returns the local minimum at (0, 9). At the initial point,
(0, 5), the objective function value is 0. At the first iteration, the search polls
the following mesh points.

f((0, 5) + (1, 0)) = f(1, 5) = 0

f((0, 5) + (0, 1)) = f(0, 6) = -7

As soon as the search polls the mesh point (0, 6), at which the objective
function value is less than at the initial point, it stops polling the current
mesh and sets the current point at the next iteration to (0, 6). Consequently,
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the search moves toward the local minimum at (0, 9) at the first iteration. You
see this by looking at the first two lines of the command line display.

Iter f-count MeshSize f(x) Method
0 1 1 0 Start iterations
1 3 2 -7 Successful Poll

Note that the pattern search performs only two evaluations of the objective
function at the first iteration, increasing the total function count from 1 to 3.

Next, set Complete poll to On and click Start. The Run solver and view
results pane displays the following results.

This time, the pattern search finds the global minimum at (0, 0). The
difference between this run and the previous one is that with Complete poll
set to On, at the first iteration the pattern search polls all four mesh points.

f((0, 5) + (1, 0)) = f(1, 5) = 0

f((0, 5) + (0, 1)) = f(0, 6) = -6

f((0, 5) + (-1, 0)) = f(-1, 5) = 0

f((0, 5) + (0, -1)) = f(0, 4) = -9
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Because the last mesh point has the lowest objective function value, the
pattern search selects it as the current point at the next iteration. The first
two lines of the command-line display show this.

Iter f-count MeshSize f(x) Method
0 1 1 0 Start iterations
1 5 2 -9 Successful Poll

In this case, the objective function is evaluated four times at the first iteration.
As a result, the pattern search moves toward the global minimum at (0, 0).

The following figure compares the sequence of points returned when
Complete poll is set to Off with the sequence when Complete poll is On.
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Using a Search Method
In addition to polling the mesh points, the pattern search algorithm can
perform an optional step at every iteration, called search. At each iteration,
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the search step applies another optimization method to the current point. If
this search does not improve the current point, the poll step is performed.

The following example illustrates the use of a search method on the problem
described in “Example — A Linearly Constrained Problem” on page 5-2. To
set up the example, enter the following commands at the MATLAB prompt to
define the initial point and constraints.

x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0 ];
bineq = [7];
Aeq = [7 1 8 3 3 3; 5 0 5 1 5 8; 2 6 7 1 1 8; 1 0 0 0 0 0];
beq = [84 62 65 1];

Then enter the settings shown in the following figures in the Optimization
Tool.
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For comparison, click Start to run the example without a search method. This
displays the plots shown in the following figure.

To see the effect of using a search method, select GPS Positive Basis Np1 in
the Search method field in Search options. This sets the search method to
be a pattern search using the pattern for GPS Positive basis Np1. Then
click Start to run the genetic algorithm. This displays the following plots.
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Note that using the search method reduces the total function evaluations by
almost 50 percent—from 1889 to 981—and reduces the number of iterations
from 250 to 78.

Mesh Expansion and Contraction
The Expansion factor and Contraction factor options, in Mesh options,
control how much the mesh size is expanded or contracted at each iteration.
With the default Expansion factor value of 2, the pattern search multiplies
the mesh size by 2 after each successful poll. With the default Contraction
factor value of 0.5, the pattern search multiplies the mesh size by 0.5 after
each unsuccessful poll.

You can view the expansion and contraction of the mesh size during the
pattern search by selecting Mesh size in the Plot functions pane.
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To also display the values of the mesh size and objective function at the
command line, set Level of display to Iterative in the Display to
command window options.

When you run the example described in “Example — A Linearly Constrained
Problem” on page 5-2, the Optimization Tool displays the following plot.
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To see the changes in mesh size more clearly, change the y-axis to logarithmic
scaling as follows:

1 Select Axes Properties from the Edit menu in the plot window.

2 In the Properties Editor, select the Y Axis tab.

3 Set Scale to Log.

Updating these settings in the MATLAB Property Editor will show the plot in
the following figure.

��
����������������
���

The first 37 iterations result in successful polls, so the mesh sizes increase
steadily during this time. You can see that the first unsuccessful poll occurs at
iteration 38 by looking at the command-line display for that iteration.

36 39 6.872e+010 3486 Successful Poll
37 40 1.374e+011 3486 Successful Poll
38 43 6.872e+010 3486 Refine Mesh
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Note that at iteration 37, which is successful, the mesh size doubles for the
next iteration. But at iteration 38, which is unsuccessful, the mesh size
is multiplied 0.5.

To see how Expansion factor and Contraction factor affect the pattern
search, make the following changes:

• Set Expansion factor to 3.0.

• Set Contraction factor to 0.75.

Then click Start. The Run solver and view results pane shows that
the final point is approximately the same as with the default settings of
Expansion factor and Contraction factor, but that the pattern search
takes longer to reach that point.
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The algorithm halts because it exceeds the maximum number of iterations,
whose value you can set in the Max iteration field in the Stopping criteria
options. The default value is 100 times the number of variables for the
objective function, which is 6 in this example.

When you change the scaling of the y-axis to logarithmic, the mesh size plot
appears as shown in the following figure.

5-30



Pattern Search Examples: Setting Options

Note that the mesh size increases faster with Expansion factor set to 3.0,
as compared with the default value of 2.0, and decreases more slowly with
Contraction factor set to 0.75, as compared with the default value of 0.5.

Mesh Accelerator
The mesh accelerator can make a pattern search converge faster to an
optimal point by reducing the number of iterations required to reach the
mesh tolerance. When the mesh size is below a certain value, the pattern
search contracts the mesh size by a factor smaller than the Contraction
factor factor.

Note It is recommended to only use the mesh accelerator for problems in
which the objective function is not too steep near the optimal point, or you
might lose some accuracy. For differentiable problems, this means that the
absolute value of the derivative is not too large near the solution.

To use the mesh accelerator, set Accelerator to On in the Mesh options.
When you run the example described in “Example — A Linearly Constrained
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Problem” on page 5-2, the number of iterations required to reach the mesh
tolerance is 246, as compared with 270 when Accelerator is set to Off.

You can see the effect of the mesh accelerator by setting Level of display
to Iterative in Display to command window. Run the example with
Accelerator set to On, and then run it again with Accelerator set to Off.
The mesh sizes are the same until iteration 226, but differ at iteration 227.
The MATLAB Command Window displays the following lines for iterations
226 and 227 with Accelerator set to Off.

Iter f-count MeshSize f(x) Method
226 1501 6.104e-005 2189 Refine Mesh
227 1516 3.052e-005 2189 Refine Mesh

Note that the mesh size is multiplied by 0.5, the default value of Contraction
factor.

For comparison, the Command Window displays the following lines for the
same iteration numbers with Accelerator set to On.

Iter f-count MeshSize f(x) Method
226 1501 6.104e-005 2189 Refine Mesh
227 1516 1.526e-005 2189 Refine Mesh

In this case the mesh size is multiplied by 0.25.

Using Cache
Typically, at any given iteration of a pattern search, some of the mesh points
might coincide with mesh points at previous iterations. By default, the
pattern search recomputes the objective function at these mesh points even
though it has already computed their values and found that they are not
optimal. If computing the objective function takes a long time—say, several
minutes—this can make the pattern search run significantly longer.

You can eliminate these redundant computations by using a cache, that is,
by storing a history of the points that the pattern search has already visited.
To do so, set Cache to On in Cache options. At each poll, the pattern search
checks to see whether the current mesh point is within a specified tolerance,
Tolerance, of a point in the cache. If so, the search does not compute the
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objective function for that point, but uses the cached function value and
moves on to the next point.

Note When Cache is set to On, the pattern search might fail to identify a
point in the current mesh that improves the objective function because it is
within the specified tolerance of a point in the cache. As a result, the pattern
search might run for more iterations with Cache set to On than with Cache
set to Off. It is generally a good idea to keep the value of Tolerance very
small, especially for highly nonlinear objective functions.

To illustrate this, select Best function value and Function count in the
Plot functions pane and run the example described in “Example — A
Linearly Constrained Problem” on page 5-2 with Cache set to Off. After the
pattern search finishes, the plots appear as shown in the following figure.
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Total Function Count: 2080

5-33



5 Using Direct Search

Note that the total function count is 2080.

Now, set Cache to On and run the example again. This time, the plots appear
as shown in the following figure.
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Total Function Count: 1973

This time, the total function count is reduced to 1973.

Setting Tolerances for the Solver
Tolerance refers to how small a parameter, such a mesh size, can become
before the search is halted or changed in some way. You can specify the value
of the following tolerances:

• Mesh tolerance — When the current mesh size is less than the value of
Mesh tolerance, the algorithm halts.
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• X tolerance — After a successful poll, if the distance from the previous
best point to the current best point is less than the value of X tolerance,
the algorithm halts.

• Function tolerance — After a successful poll, if the difference between
the function value at the previous best point and function value at the
current best point is less than the value of Function tolerance, the
algorithm halts.

• Nonlinear constraint tolerance — The algorithm treats a point to be
feasible if constraint violation is less than TolCon.

• Bind tolerance — Bind tolerance applies to constrained problems and
specifies how close a point must get to the boundary of the feasible region
before a linear constraint is considered to be active. When a linear
constraint is active, the pattern search polls points in directions parallel to
the linear constraint boundary as well as the mesh points.

Usually, you should set Bind tolerance to be at least as large as the
maximum of Mesh tolerance, X tolerance, and Function tolerance.

Example — Setting Bind Tolerance
The following example illustrates of how Bind tolerance affects a pattern
search. The example finds the minimum of

f x x x x1 2 1
2

2
2, ,( ) = +

subject to the constraints

–11x1 + 10x2 ≤ 10
10x1 – 10x2 ≤ 10.

Note that you can compute the objective function using the function norm.
The feasible region for the problem lies between the two lines in the following
figure.
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Running a Pattern Search with the Default Bind Tolerance
To run the example, enter optimtool and choose patternsearch to open the
Optimization Tool. Enter the following information:

• Set Objective function to @(x) norm(x).

• Set Start point to [-1.001 -1.1].

• Select Mesh size in the Plot functions pane.

• Set Level of display to Iterative in the Display to command window
options.

Then click Start to run the pattern search.

The display in the MATLAB Command Window shows that the first four polls
are unsuccessful, because the mesh points do not lie in the feasible region.

Iter f-count MeshSize f(x) Method
0 1 1 1.487 Start iterations
1 1 0.5 1.487 Refine Mesh
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2 1 0.25 1.487 Refine Mesh
3 1 0.125 1.487 Refine Mesh
4 1 0.0625 1.487 Refine Mesh

The pattern search contracts the mesh at each iteration until one of the mesh
points lies in the feasible region. The following figure shows a close-up of the
initial point and mesh points at iteration 5.
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The top mesh point, which is (-1.001, -1.0375), has a smaller objective function
value than the initial point, so the poll is successful.

Because the distance from the initial point to lower boundary line is less than
the default value of Bind tolerance, which is 0.0001, the pattern search
does not consider the linear constraint 10x1 – 10x2 ≤ 10 to be active, so it does
not search points in a direction parallel to the boundary line.
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Increasing the Value of Bind Tolerance
To see the effect of bind tolerance, change Bind tolerance to 0.01 and run
the pattern search again.

This time, the display in the MATLAB Command Window shows that the first
two iterations are successful.

Iter f-count MeshSize f(x) Method
0 1 1 1.487 Start iterations
1 2 2 0.7817 Successful Poll
2 3 4 0.6395 Successful Poll

Because the distance from the initial point to the boundary is less than Bind
tolerance, the second linear constraint is active. In this case, the pattern
search polls points in directions parallel to the boundary line 10x1 – 10x2 ≤ 10,
resulting in successful poll. The following figure shows the initial point with
two addition search points in directions parallel to the boundary.
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The following figure compares the sequences of points during the first 20
iterations of the pattern search for both settings of Bind tolerance.
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Note that when Bind tolerance is set to .01, the points move toward the
optimal point more quickly. The pattern search requires only 90 iterations.
When Bind tolerance is set to .0001, the search requires 124 iterations.
However, when the feasible region does not contain very acute angles, as it
does in this example, increasing Bind tolerance can increase the number of
iterations required, because the pattern search tends to poll more points.

Constrained Minimization Using patternsearch
Suppose you want to minimize the simple objective function of two variables
x1 and x2,

min ( ) - . /

x
f x x x x x x x x= −( ) + + − +( )4 2 1 4 41

2
1
4 3

1
2

1 2 2
2

2
2

subject to the following nonlinear inequality constraints and bounds
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x x x x
x x

1 2 1 2

1 2

1 5 0
10

⋅ + − + ≤
− ⋅ ≤

. , (nonlinear constraint)
0,                  (nonlinear constraint)

  ,               0 11≤ ≤x          (bound)
 .                      (bound)0 132≤ ≤x

Begin by creating the objective and constraint functions. First, create an
M-file named simple_objective.m as follows:

function y = simple_objective(x)

y = (4 - 2.1*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + (-4 + 4*x(2)^2)*x(2)^2;

The pattern search solver assumes the objective function will take one input x
where x has as many elements as number of variables in the problem. The
objective function computes the value of the function and returns that scalar
value in its one return argument y.

Then create an M-file named simple_constraint.m containing the
constraints:

function [c, ceq] = simple_constraint(x)
c = [1.5 + x(1)*x(2) + x(1) - x(2);
-x(1)*x(2) + 10];
ceq = [];

The pattern search solver assumes the constraint function will take one input
x, where x has as many elements as the number of variables in the problem.
The constraint function computes the values of all the inequality and equality
constraints and returns two vectors, c and ceq, respectively.

Next, to minimize the objective function using the patternsearch function,
you need to pass in a function handle to the objective function as well as
specifying a start point as the second argument. Lower and upper bounds
are provided as LB and UB respectively. In addition, you also need to pass a
function handle to the nonlinear constraint function.

ObjectiveFunction = @simple_objective;

X0 = [0 0]; % Starting point

LB = [0 0]; % Lower bound

UB = [1 13]; % Upper bound

ConstraintFunction = @simple_constraint;
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[x,fval] = patternsearch(ObjectiveFunction,X0,[],[],[],[],...

LB,UB,ConstraintFunction)

Optimization terminated: mesh size less than options.TolMesh

and constraint violation is less than options.TolCon.

x =

0.8122 12.3122

fval =

9.1324e+004

Next, plot the results. Create an options structure using psoptimset that
selects two plot functions. The first plot function psplotbestf plots the
best objective function value at every iteration. The second plot function
psplotmaxconstr plots the maximum constraint violation at every iteration.

Note You can also visualize the progress of the algorithm by displaying
information to the Command Window using the 'Display' option.

options = psoptimset('PlotFcns',{@psplotbestf,@psplotmaxconstr},'Display','iter');

[x,fval] = patternsearch(ObjectiveFunction,X0,[],[],[],[],LB,UB,ConstraintFunction,options)

max

Iter f-count f(x) constraint MeshSize Method

0 1 0 10 0.8919

1 5 113580 0 0.001 Increase penalty

2 24 91324.4 0 1e-005 Increase penalty

3 48 91324 0 1e-007 Increase penalty

Optimization terminated: mesh size less than options.TolMesh

and constraint violation is less than options.TolCon.

x =

0.8122 12.3122

fval =

9.1324e+004
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Best Objective Function Value and Maximum Constraint Violation at Each
Iteration

Vectorizing the Objective and Constraint Functions
Direct search often runs faster if you vectorize the objective and nonlinear
constraint functions. This means your functions evaluate all the points in a
poll or search pattern at once, with one function call, without having to loop
through the points one at a time. Therefore, the option Vectorize = 'on'
works only when CompletePoll or CompleteSearch are also set to 'on'.

If there are nonlinear constraints, the objective function and the nonlinear
constraints all need to be vectorized in order for the algorithm to compute in
a vectorized manner.
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Vectorized Objective Function
A vectorized objective function accepts a matrix as input and generates a
vector of function values, where each function value corresponds to one row
or column of the input matrix. patternsearch resolves the ambiguity in
whether the rows or columns of the matrix represent the points of a pattern
as follows. Suppose the input matrix has m rows and n columns:

• If the initial point x0 is a column vector of size m, the objective function
takes each column of the matrix as a point in the pattern and returns a
vector of size n.

• If the initial point x0 is a row vector of size n, the objective function takes
each row of the matrix as a point in the pattern and returns a vector of
size m.

• If the initial point x0 is a scalar, the matrix has one row (m = 1, the matrix
is a vector), and each entry of the matrix represents one point to evaluate.

Pictorially, the matrix and calculation are represented by the following figure.
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Structure of Vectorized Functions

For example, suppose the objective function is

f x x x x x x x( ) / .= + − − + −1
4

2
4

1
2

2
2

1 24 2 3 2

If the initial vector x0 is a column vector, such as [0;0], an M-file for
vectorized evaluation is

function f = vectorizedc(x)

f = x(1,:).^4+x(2,:).^4-4*x(1,:).^2-2*x(2,:).^2...
+3*x(1,:)-.5*x(2,:);
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If the initial vector x0 is a row vector, such as [0,0], an M-file for vectorized
evaluation is

function f = vectorizedr(x)

f = x(:,1).^4+x(:,2).^4-4*x(:,1).^2-2*x(:,2).^2...
+3*x(:,1)-.5*x(:,2);

If you want to use the same objective (fitness) function for both pattern search
and genetic algorithm, write your function to have the points represented
by row vectors, and write x0 as a row vector. The genetic algorithm always
takes individuals as the rows of a matrix. This was a design decision—the
genetic algorithm does not require a user-supplied population, so needs to
have a default format.

To minimize vectorizedc, enter the following commands:

options=psoptimset('Vectorized','on','CompletePoll','on');
x0=[0;0];
[x fval]=patternsearch(@vectorizedc,x0,...

[],[],[],[],[],[],[],options)

MATLAB returns the following output:

Optimization terminated: mesh size less than options.TolMesh.

x =
-1.5737
1.0575

fval =
-10.0088

Vectorized Constraint Functions
Only nonlinear constraints need to be vectorized; bounds and linear
constraints are handled automatically. If there are nonlinear constraints, the
objective function and the nonlinear constraints all need to be vectorized in
order for the algorithm to compute in a vectorized manner.
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The same considerations hold for constraint functions as for objective
functions: the initial point x0 determines the type of points (row or column
vectors) in the poll or search. If the initial point is a row vector of size k, the
matrix x passed to the constraint function has k columns. Similarly, if the
initial point is a column vector of size k, the matrix of poll or search points
has k rows. The figure Structure of Vectorized Functions on page 5-44 may
make this clear.

Your nonlinear constraint function returns two matrices, one for inequality
constraints, and one for equality constraints. Suppose there are nc nonlinear
inequality constraints and nceq nonlinear equality constraints. For row vector
x0, the constraint matrices have nc and nceq columns respectively, and the
number of rows is the same as in the input matrix. Similarly, for a column
vector x0, the constraint matrices have nc and nceq rows respectively, and the
number of columns is the same as in the input matrix. In figure Structure of
Vectorized Functions on page 5-44, “Results” includes both nc and nceq.

Example of Vectorized Objective and Constraints
Suppose that the nonlinear constraints are

x x

x x

1
2

2
2

2 1

9 4
1

1

+ ≤

≥ ( ) −

 (the interior of an ellipse),

cosh .

Write an M-file for these constraints for row-form x0 as follows:

function [c ceq] = ellipsecosh(x)

c(:,1)=x(:,1).^2/9+x(:,2).^2/4-1;
c(:,2)=cosh(x(:,1))-x(:,2)-1;
ceq=[];

Minimize vectorizedr (defined in “Vectorized Objective Function” on page
5-43) subject to the constraints ellipsecosh:

x0=[0,0];
options=psoptimset('Vectorized','on','CompletePoll','on');
[x fval]=patternsearch(@vectorizedr,x0,...

[],[],[],[],[],[],@ellipsecosh,options);
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MATLAB returns the following output:

Optimization terminated: mesh size less than options.TolMesh
and constraint violation is less than options.TolCon.

x =
-1.3516 1.0612

fval =
-9.5394
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Parallel Computing with Pattern Search

In this section...

“Parallel Pattern Search” on page 5-48

“Using Parallel Computing with patternsearch” on page 5-49

“Parallel Search Function” on page 5-51

“Implementation Issues in Parallel Pattern Search” on page 5-51

“Parallel Computing Considerations” on page 5-52

Parallel Pattern Search
Parallel computing is the technique of using multiple processes or processors
on a single problem. The reason to use parallel computing is to speed up
computations.

If enabled for parallel computation, the Genetic Algorithm and Direct Search
Toolbox™ solver patternsearch automatically distributes the evaluation of
objective and constraint functions associated with the points in a pattern to
multiple processes or processors. patternsearch uses parallel computing
under the following conditions:

• You have a license for Parallel Computing Toolbox™ software.

• Parallel computing is enabled with matlabpool, a Parallel Computing
Toolbox function.

• The following options are set using psoptimset:

- Cache is 'off' (default)

- CompletePoll is 'on'

- Vectorized is 'off' (default)

- UseParallel is 'always'

When these conditions hold, the solver computes the objective function and
constraint values of the pattern search in parallel during a poll.

Currently, UseParallel cannot be accessed using the Optimization Tool GUI.
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Using Parallel Computing with patternsearch

• “Using Parallel Computing with Multicore Processors” on page 5-49

• “Using Parallel Computing with a Multiprocessor Network” on page 5-49

Using Parallel Computing with Multicore Processors
If you have a multicore processor, you might see speedup using parallel
processing. You can establish a matlabpool of up to 4 parallel workers with a
basic Parallel Computing Toolbox license.

Suppose you have a dual-core processor, and wish to use parallel computing:

• Enter

matlabpool open 2

at the command line. The 2 specifies the number of processors to use.

• Enter

options = psoptimset('UseParallel','always');

When you run an applicable solver with options, applicable solvers
automatically use parallel computing.

To stop computing optimizations in parallel, set UseParallel to 'never'. To
halt all parallel computation, enter

matlabpool close

Using Parallel Computing with a Multiprocessor Network
If you have multiple processors on a network, use Parallel Computing Toolbox
functions and MATLAB® Distributed Computing Server™ software to
establish parallel computation. Here are the steps to take:

1 Obtain a license for Parallel Computing Toolbox functions and MATLAB
Distributed Computing Server software.

5-49



5 Using Direct Search

2 Configure your system for parallel processing. See the Parallel Computing
Toolbox documentation, or MATLAB Distributed Computing Server System
Administrator’s Guide.

In particular, if network_file_path is the network path to your objective
or constraint functions, enter

pctRunOnAll('addpath network_file_path')

so the worker processors can access your objective or constraint M-files.

Check whether an M-file is on the path of every worker by entering

pctRunOnAll('which filename')

If any worker does not have a path to the M-file, it reports

filename not found.

3 At the command line enter

matlabpool open conf

or

matlabpool open conf n

where conf is your configuration, and n is the number of processors you
wish to use.

4 Enter

options = psoptimset('UseParallel','always');

Once your parallel computing environment is established, applicable solvers
automatically use parallel computing whenever called with options.

To stop computing optimizations in parallel, set UseParallel to 'never'. To
halt all parallel computation, enter

matlabpool close
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Parallel Search Function
patternsearch can optionally call a search function at each iteration. The
search is done in parallel under the following conditions:

• CompleteSearch is 'on'.

• The search method is not @searchneldermead or custom.

• If the search method is a pattern search function or Latin hypercube
search, UseParallel is 'always'.

• If the search method is ga, the search method option structure has
UseParallel set to 'always'.

Implementation Issues in Parallel Pattern Search
Pattern search is implemented in the patternsearch solver by using
the Parallel Computing Toolbox function parfor. parfor distributes the
evaluation of objective and constraint functions among multiple processes
or processors.

The limitations on options, listed in “Parallel Pattern Search” on page 5-48,
arise partly from the limitations of parfor, and partly from the nature of
parallel processing:

• Cache is implemented as a persistent variable internally. parfor does not
handle persistent variables, because the variable could be set differently at
different processors.

• CompletePoll determines whether a poll stops as soon as a better point
is found. When searching in parallel with parfor, all evaluations are
scheduled at once, and computing continues after all evaluations are
returned. It is not easy to halt evaluations once they have been scheduled.

• Vectorized determines whether a pattern is evaluated with one function
call. If it is 'on', it is not possible to distribute the evaluation of the
function using parfor.

More caveats related to parfor are listed in the “Limitations” section of the
Parallel Computing Toolbox documentation.
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Parallel Computing Considerations
The “Improving Performance with Parallel Computing” section of the
Optimization Toolbox™ documentation contains information on factors that
affect the speed of parallel computations, factors that affect the results of
parallel computations, and searching for global optima. Those considerations
also apply to parallel computing with pattern search.

Additionally, there are considerations having to do with random numbers
that apply to Genetic Algorithm and Direct Search Toolbox functions.
Random number sequences in MATLAB® are pseudorandom, determined
from a “seed,” an initial setting. Parallel computations use seeds that are
not necessarily controllable or reproducible. For example, there is a default
global setting on each instance of MATLAB that determines the current seed
for random sequences.

Parallel pattern search does not have reproducible polls when used with
MADS, and does not have reproducible searches with MADS, the genetic
algorithm, or Latin hypercube search methods.
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Genetic Algorithm Optimizations Using the Optimization
Tool GUI

In this section...

“Introduction” on page 6-2

“Displaying Plots” on page 6-2

“Example — Creating a Custom Plot Function” on page 6-3

“Reproducing Your Results” on page 6-6

“Example — Resuming the Genetic Algorithm from the Final Population”
on page 6-7

Introduction
The Optimization Tool GUI is described in the chapter Optimization Tool in
the Optimization Toolbox™ User’s Guide. This section describes some places
where there are some differences between the use of the genetic algorithm in
the Optimization Tool and the use of other solvers.

Displaying Plots
The Plot functions pane, shown in the following figure, enables you to
display various plots of the results of the genetic algorithm.
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Select the check boxes next to the plots you want to display. For example, if
you select Best fitness and Best individual, and run the example described
in “Example: Rastrigin’s Function” on page 3-8, the tool displays plots similar
to those shown in the following figure.

The upper plot displays the best and mean fitness values in each generation.
The lower plot displays the coordinates of the point with the best fitness value
in the current generation.

Note When you display more than one plot, clicking on any plot while the
genetic algorithm is running or after the solver has completed opens a larger
version of the plot in a separate window.

“Plot Options” on page 9-24 describes the types of plots you can create.

Example — Creating a Custom Plot Function
If none of the plot functions that come with the software is suitable for the
output you want to plot, you can write your own custom plot function, which
the genetic algorithm calls at each generation to create the plot. This example
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shows how to create a plot function that displays the change in the best fitness
value from the previous generation to the current generation.

This section covers the following topics:

• “Creating the Custom Plot Function” on page 6-4

• “Using the Plot Function” on page 6-5

• “How the Plot Function Works” on page 6-5

Creating the Custom Plot Function
To create the plot function for this example, copy and paste the following code
into a new M-file in the MATLAB® Editor.

function state = gaplotchange(options, state, flag)

% GAPLOTCHANGE Plots the logarithmic change in the best score from the

% previous generation.

%

persistent last_best % Best score in the previous generation

if(strcmp(flag,'init')) % Set up the plot

set(gca,'xlim',[1,options.Generations],'Yscale','log');

hold on;

xlabel Generation

title('Change in Best Fitness Value')

end

best = min(state.Score); % Best score in the current generation

if state.Generation == 0 % Set last_best to best.

last_best = best;

else

change = last_best - best; % Change in best score

last_best=best;

plot(state.Generation, change, '.r');

title(['Change in Best Fitness Value'])

end

Then save the M-file as gaplotchange.m in a directory on the MATLAB path.
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Using the Plot Function
To use the custom plot function, select Custom in the Plot functions pane
and enter @gaplotchange in the field to the right. To compare the custom plot
with the best fitness value plot, also select Best fitness. Now, if you run the
example described in “Example: Rastrigin’s Function” on page 3-8, the tool
displays plots similar to those shown in the following figure.
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Note that because the scale of the y-axis in the lower custom plot is
logarithmic, the plot only shows changes that are greater then 0. The
logarithmic scale enables you to see small changes in the fitness function
that the upper plot does not reveal.

How the Plot Function Works
The plot function uses information contained in the following structures,
which the genetic algorithm passes to the function as input arguments:

• options — The current options settings

• state — Information about the current generation
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• flag — String indicating the current status of the algorithm

The most important lines of the plot function are the following:

• persistent last_best

Creates the persistent variable last_best—the best score in the previous
generation. Persistent variables are preserved over multiple calls to the
plot function.

• set(gca,'xlim',[1,options.Generations],'Yscale','log');

Sets up the plot before the algorithm starts. options.Generations is the
maximum number of generations.

• best = min(state.Score)

The field state.Score contains the scores of all individuals in the current
population. The variable best is the minimum score. For a complete
description of the fields of the structure state, see “Structure of the Plot
Functions” on page 9-26.

• change = last_best - best

The variable change is the best score at the previous generation minus the
best score in the current generation.

• plot(state.Generation, change, '.r')

Plots the change at the current generation, whose number is contained in
state.Generation.

The code for gaplotchange contains many of the same elements as the code
for gaplotbestf, the function that creates the best fitness plot.

Reproducing Your Results
To reproduce the results of the last run of the genetic algorithm, select the
Use random states from previous run check box. This resets the states of
the random number generators used by the algorithm to their previous values.
If you do not change any other settings in the Optimization Tool, the next time
you run the genetic algorithm, it returns the same results as the previous run.
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Normally, you should leave Use random states from previous run
unselected to get the benefit of randomness in the genetic algorithm. Select
the Use random states from previous run check box if you want to analyze
the results of that particular run or show the exact results to others. After
the algorithm has run, you can clear your results using the Clear Status
button in the Run solver settings.

Note If you select Include information needed to resume this run,
then selecting Use random states from previous run has no effect on the
initial population created when you import the problem and run the genetic
algorithm on it. The latter option is only intended to reproduce results from
the beginning of a new run, not from a resumed run.

Example — Resuming the Genetic Algorithm from
the Final Population
The following example shows how export a problem so that when you import
it and click Start, the genetic algorithm resumes from the final population
saved with the exported problem. To run the example, enter the following
information in the Optimization Tool:

• Set Fitness function to @ackleyfcn, which computes Ackley’s function, a
test function provided with the software.

• Set Number of variables to 10.

• Select Best fitness in the Plot functions pane.

• Click Start.

This displays the following plot.
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Suppose you want to experiment by running the genetic algorithm with other
options settings, and then later restart this run from its final population with
its current options settings. You can do this using the following steps:

1 Click Export to Workspace.

2 In the dialog box that appears,

• Select Export problem and options to a MATLAB structure
named.

• Enter a name for the problem and options, such as ackley_uniform,
in the text field.

• Select Include information needed to resume this run.

The dialog box should now appear as in the following figure.
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3 Click OK.

This exports the problem and options to a structure in the MATLAB
workspace. You can view the structure in the MATLAB Command Window
by entering

ackley_uniform

ackley_uniform =
fitnessfcn: @ackleyfcn

nvars: 10
Aineq: []
bineq: []

Aeq: []
beq: []
lb: []
ub: []

nonlcon: []
randstate: []

randnstate: []
solver: 'ga'

options: [1x1 struct]

After running the genetic algorithm with different options settings or even a
different fitness function, you can restore the problem as follows:
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1 Select Import Problem from the File menu. This opens the dialog box
shown in the following figure.

2 Select ackley_uniform.

3 Click Import.

This sets the Initial population and Initial scores fields in the Population
panel to the final population of the run before you exported the problem.
All other options are restored to their setting during that run. When you
click Start, the genetic algorithm resumes from the saved final population.
The following figure shows the best fitness plots from the original run and
the restarted run.
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Note If, after running the genetic algorithm with the imported problem,
you want to restore the genetic algorithm’s default behavior of generating a
random initial population, delete the population in the Initial population
field.
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Using the Genetic Algorithm from the Command Line

In this section...

“Running ga with the Default Options” on page 6-12

“Setting Options for ga at the Command Line” on page 6-13

“Using Options and Problems from the Optimization Tool” on page 6-16

“Reproducing Your Results” on page 6-17

“Resuming ga from the Final Population of a Previous Run” on page 6-18

“Running ga from an M-File” on page 6-19

Running ga with the Default Options
To run the genetic algorithm with the default options, call ga with the syntax

[x fval] = ga(@fitnessfun, nvars)

The input arguments to ga are

• @fitnessfun — A function handle to the M-file that computes the fitness
function. “Writing M-Files for Functions You Want to Optimize” on page
1-3 explains how to write this M-file.

• nvars — The number of independent variables for the fitness function.

The output arguments are

• x — The final point

• fval — The value of the fitness function at x

For a description of additional input and output arguments, see the reference
page for ga.

You can run the example described in “Example: Rastrigin’s Function” on
page 3-8 from the command line by entering

[x fval] = ga(@rastriginsfcn, 2)
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This returns

x =
0.0027 -0.0052

fval =
0.0068

Additional Output Arguments
To get more information about the performance of the genetic algorithm, you
can call ga with the syntax

[x fval exitflag output population scores] = ga(@fitnessfcn, nvars)

Besides x and fval, this function returns the following additional output
arguments:

• exitflag — Integer value corresponding to the reason the algorithm
terminated

• output — Structure containing information about the performance of the
algorithm at each generation

• population — Final population

• scores — Final scores

See the ga reference page for more information about these arguments.

Setting Options for ga at the Command Line
You can specify any of the options that are available for ga by passing an
options structure as an input argument to ga using the syntax

[x fval] = ga(@fitnessfun, nvars, [],[],[],[],[],[],[],options)

This syntax does not specify any linear equality, linear inequality, or nonlinear
constraints.

You create the options structure using the function gaoptimset.
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options = gaoptimset(@ga)

This returns the structure options with the default values for its fields.

options =
PopulationType: 'doubleVector'

PopInitRange: [2x1 double]
PopulationSize: 20

EliteCount: 2
CrossoverFraction: 0.8000

ParetoFraction: []
MigrationDirection: 'forward'
MigrationInterval: 20
MigrationFraction: 0.2000

Generations: 100
TimeLimit: Inf

FitnessLimit: -Inf
StallGenLimit: 50

StallTimeLimit: Inf
TolFun: 1.0000e-006
TolCon: 1.0000e-006

InitialPopulation: []
InitialScores: []

InitialPenalty: 10
PenaltyFactor: 100
PlotInterval: 1
CreationFcn: @gacreationuniform

FitnessScalingFcn: @fitscalingrank
SelectionFcn: @selectionstochunif
CrossoverFcn: @crossoverscattered
MutationFcn: {[1x1 function_handle] [1] [1]}

DistanceMeasureFcn: []
HybridFcn: []

Display: 'final'
PlotFcns: []

OutputFcns: []
Vectorized: 'off'

UseParallel: 'never'
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The function ga uses these default values if you do not pass in options as an
input argument.

The value of each option is stored in a field of the options structure, such as
options.PopulationSize. You can display any of these values by entering
options. followed by the name of the field. For example, to display the size
of the population for the genetic algorithm, enter

options.PopulationSize

ans =

20

To create an options structure with a field value that is different from the
default — for example to set PopulationSize to 100 instead of its default
value 20 — enter

options = gaoptimset('PopulationSize', 100)

This creates the options structure with all values set to their defaults except
for PopulationSize, which is set to 100.

If you now enter,

ga(@fitnessfun,nvars,[],[],[],[],[],[],[],options)

ga runs the genetic algorithm with a population size of 100.

If you subsequently decide to change another field in the options structure,
such as setting PlotFcns to @gaplotbestf, which plots the best fitness
function value at each generation, call gaoptimset with the syntax

options = gaoptimset(options, 'PlotFcns', @plotbestf)

This preserves the current values of all fields of options except for PlotFcns,
which is changed to @plotbestf. Note that if you omit the input argument
options, gaoptimset resets PopulationSize to its default value 20.

You can also set both PopulationSize and PlotFcns with the single command
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options = gaoptimset('PopulationSize',100,'PlotFcns',@plotbestf)

Using Options and Problems from the Optimization
Tool
As an alternative to creating an options structure using gaoptimset, you can
set the values of options in the Optimization Tool and then export the options
to a structure in the MATLAB® workspace, as described in the “Importing and
Exporting Your Work” section of the Optimization Toolbox™ documentation.
If you export the default options in the Optimization Tool, the resulting
structure options has the same settings as the default structure returned
by the command

options = gaoptimset(@ga)

except that the option 'Display' defaults to 'off' in an exported structure,
and is 'final' in the default at the command line.

If you export a problem structure, ga_problem, from the Optimization Tool,
you can apply ga to it using the syntax

[x fval] = ga(ga_problem)

The problem structure contains the following fields:

• fitnessfcn — Fitness function

• nvars — Number of variables for the problem

• Aineq — Matrix for inequality constraints

• Bineq — Vector for inequality constraints

• Aeq — Matrix for equality constraints

• Beq — Vector for equality constraints

• LB — Lower bound on x

• UB — Upper bound on x

• nonlcon — Nonlinear constraint function

• options — Options structure
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Reproducing Your Results
Because the genetic algorithm is stochastic—that is, it makes random
choices—you get slightly different results each time you run the genetic
algorithm. The algorithm uses the MATLAB uniform and normal random
number generators, rand and randn, to makes random choices at each
iteration. Each time ga calls rand and randn, their states are changed, so that
the next time they are called, they return different random numbers. This is
why the output of ga differs each time you run it.

If you need to reproduce your results exactly, you can call ga with an output
argument that contains the current states of rand and randn and then reset
the states to these values before running ga again. For example, to reproduce
the output of ga applied to Rastrigin’s function, call ga with the syntax

[x fval exitflag output] = ga(@rastriginsfcn, 2);

Suppose the results are

x =
0.0027 -0.0052

fval =
0.0068

The states of rand and randn are stored in the first two fields of output.

output =
randstate: [35x1 double]

randnstate: [2x1 double]
generations: 100

funccount: 2000
message: [1x64 char]

Then, reset the states, by entering

rand('twister', output.randstate);
randn('state', output.randnstate);

If you now run ga a second time, you get the same results.
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You can reproduce your run in the Optimization Tool by checking the box Use
random states from previous run in the Run solver and view results
section.

Note If you do not need to reproduce your results, it is better not to set the
states of rand and randn, so that you get the benefit of the randomness in
the genetic algorithm.

Resuming ga from the Final Population of a Previous
Run
By default, ga creates a new initial population each time you run it. However,
you might get better results by using the final population from a previous run
as the initial population for a new run. To do so, you must have saved the final
population from the previous run by calling ga with the syntax

[x,fval,exitflag,output,final_pop] = ga(@fitnessfcn, nvars);

The last output argument is the final population. To run ga using final_pop
as the initial population, enter

options = gaoptimset('InitialPop', final_pop);
[x,fval,exitflag,output,final_pop2] = ...

ga(@fitnessfcn,nvars,[],[],[],[],[],[],[],options);

You can then use final_pop2, the final population from the second run, as
the initial population for a third run.

In Optimization Tool, you can choose to export a problem in a way that lets
you resume the run. Simply check the box Include information needed
to resume this run when exporting the problem.
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This saves the final population, which becomes the initial population when
imported.

If you want to run a problem that was saved with the final population, but
would rather not use the initial population, simply delete or otherwise change
the initial population in the Options > Population pane.

Running ga from an M-File
The command-line interface enables you to run the genetic algorithm many
times, with different options settings, using an M-file. For example, you can
run the genetic algorithm with different settings for Crossover fraction to
see which one gives the best results. The following code runs the function ga
21 times, varying options.CrossoverFraction from 0 to 1 in increments of
0.05, and records the results.

options = gaoptimset('Generations',300);
rand('twister', 71); % These two commands are only included to
randn('state', 59); % make the results reproducible.
record=[];
for n=0:.05:1
options = gaoptimset(options,'CrossoverFraction', n);
[x fval]=ga(@rastriginsfcn, 10,[],[],[],[],[],[],[],options);
record = [record; fval];

end
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You can plot the values of fval against the crossover fraction with the
following commands:

plot(0:.05:1, record);
xlabel('Crossover Fraction');
ylabel('fval')

The following plot appears.
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The plot indicates that you get the best results by setting
options.CrossoverFraction to a value somewhere between 0.6 and 0.95.

You can get a smoother plot of fval as a function of the crossover fraction by
running ga 20 times and averaging the values of fval for each crossover
fraction. The following figure shows the resulting plot.
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The plot narrows the range of best choices for options.CrossoverFraction
to values between 0.7 and 0.9.
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Genetic Algorithm Examples

In this section...

“Improving Your Results” on page 6-22

“Population Diversity” on page 6-22

“Fitness Scaling” on page 6-31

“Selection” on page 6-34

“Reproduction Options” on page 6-35

“Mutation and Crossover” on page 6-35

“Setting the Amount of Mutation” on page 6-36

“Setting the Crossover Fraction” on page 6-38

“Comparing Results for Varying Crossover Fractions” on page 6-42

“Global vs. Local Minima” on page 6-44

“Using a Hybrid Function” on page 6-49

“Setting the Maximum Number of Generations” on page 6-53

“Vectorizing the Fitness Function” on page 6-54

“Constrained Minimization Using ga” on page 6-55

Improving Your Results
To get the best results from the genetic algorithm, you usually need to
experiment with different options. Selecting the best options for a problem
involves trial and error. This section describes some ways you can change
options to improve results. For a complete description of the available options,
see “Genetic Algorithm Options” on page 9-23.

Population Diversity
One of the most important factors that determines the performance of the
genetic algorithm performs is the diversity of the population. If the average
distance between individuals is large, the diversity is high; if the average
distance is small, the diversity is low. Getting the right amount of diversity is
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a matter of trial and error. If the diversity is too high or too low, the genetic
algorithm might not perform well.

This section explains how to control diversity by setting the Initial range of
the population. “Setting the Amount of Mutation” on page 6-36 describes how
the amount of mutation affects diversity.

This section also explains how to set the population size.

Example — Setting the Initial Range
By default, the Optimization Tool creates a random initial population using
a creation function. You can specify the range of the vectors in the initial
population in the Initial range field in Population options.

Note The initial range only restricts the range of the points in the initial
population by specifying the lower and upper bounds. Subsequent generations
can contain points whose entries do not lie in the initial range. Additionally,
the upper and lower bounds can be adjusted by setting the Bounds fields
in the Constraints panel.

If you know approximately where the solution to a problem lies, you should
specify the initial range so that it contains your guess for the solution.
However, the genetic algorithm can find the solution even if it does not lie in
the initial range, provided that the populations have enough diversity.

The following example shows how the initial range affects the performance
of the genetic algorithm. The example uses Rastrigin’s function, described
in “Example: Rastrigin’s Function” on page 3-8. The minimum value of the
function is 0, which occurs at the origin.

To run the example, make the following settings in the Optimization Tool:

• Set Fitness function to @rastriginsfcn.

• Set Number of variables to 2.

• Select Best fitness in the Plot functions pane.

• Select Distance in the Plot functions pane.
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• Set Initial range to [1; 1.1].

Then click Start. The genetic algorithm returns the best fitness function
value of approximately 2 and displays the plots in the following figure.
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The upper plot, which displays the best fitness at each generation, shows
little progress in lowering the fitness value. The lower plot shows the average
distance between individuals at each generation, which is a good measure of
the diversity of a population. For this setting of initial range, there is too little
diversity for the algorithm to make progress.

Next, try setting Initial range to [1; 100] and running the algorithm. The
genetic algorithm returns the best fitness value of approximately 3.9 and
displays the following plots.
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This time, the genetic algorithm makes progress, but because the average
distance between individuals is so large, the best individuals are far from
the optimal solution.

Finally, set Initial range to [1; 2] and run the genetic algorithm. This
returns the best fitness value of approximately .012 and displays the following
plots.
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The diversity in this case is better suited to the problem, so the genetic
algorithm returns a much better result than in the previous two cases.

Example — Linearly Constrained Population and Custom Plot
Function
This example shows how the default creation function for linearly constrained
problems, gacreationlinearfeasible, creates a well-dispersed population
that satisfies linear constraints and bounds. It also contains an example of a
custom plot function.

The problem uses the objective function in lincontest6.m, a quadratic:

f x
x

x x x x x( ) .= + − − −1
2

2
2

1 2 1 22
2 6
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To see code for the function, enter type lincontest6. The constraints are
three linear inequalities:

x1 + x2 ≤ 2,
–x1 + x2 ≤ 2,
2x1 + 2x2 ≤ 3.

Also, the variables xi are restricted to be positive.

1 Create a custom plot function file containing the following code:

function state = gaplotshowpopulation2(unused,state,flag,fcn)
% This plot function works in 2-d only
if size(state.Population,2) > 2

return;
end
if nargin < 4

fcn = [];
end
% Dimensions to plot
dimensionsToPlot = [1 2];

switch flag
% Plot initialization
case 'init'

pop = state.Population(:,dimensionsToPlot);
plotHandle = plot(pop(:,1),pop(:,2),'*');
set(plotHandle,'Tag','gaplotshowpopulation2')
title('Population plot in two dimension','interp','none')
xlabelStr = sprintf('%s %s','Variable ',...

num2str(dimensionsToPlot(1)));
ylabelStr = sprintf('%s %s','Variable ',...

num2str(dimensionsToPlot(2)));
xlabel(xlabelStr,'interp','none');
ylabel(ylabelStr,'interp','none');
hold on;

% plot the inequalities
plot([0 1.5],[2 0.5],'m-.') % x1 + x2 <= 2
plot([0 1.5],[1 3.5/2],'m-.'); % -x1 + 2*x2 <= 2
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plot([0 1.5],[3 0],'m-.'); % 2*x1 + x2 <= 3
% plot lower bounds
plot([0 0], [0 2],'m-.'); % lb = [ 0 0];
plot([0 1.5], [0 0],'m-.'); % lb = [ 0 0];
set(gca,'xlim',[-0.7,2.2])
set(gca,'ylim',[-0.7,2.7])

% Contour plot the objective function
if ~isempty(fcn)

range = [-0.5,2;-0.5,2];
pts = 100;
span = diff(range')/(pts - 1);
x = range(1,1): span(1) : range(1,2);
y = range(2,1): span(2) : range(2,2);

pop = zeros(pts * pts,2);
values = zeros(pts,1);
k = 1;
for i = 1:pts

for j = 1:pts
pop(k,:) = [x(i),y(j)];
values(k) = fcn(pop(k,:));
k = k + 1;

end
end
values = reshape(values,pts,pts);
contour(x,y,values);
colorbar

end
% Pause for three seconds to view the initial plot
pause(3);

case 'iter'
pop = state.Population(:,dimensionsToPlot);
plotHandle = findobj(get(gca,'Children'),'Tag',...

'gaplotshowpopulation2');
set(plotHandle,'Xdata',pop(:,1),'Ydata',pop(:,2));

end
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The custom plot function plots the lines representing the linear inequalities
and bound constraints, plots level curves of the objective (fitness) function,
and plots the population as it evolves.

2 At the command line, enter the constraints as a matrix and vectors:

A = [1,1;-1,2;2,1]; b = [2;2;3]; lb = zeros(2,1);

3 Set options to use gaplotshowpopulation:

options = gaoptimset('PlotFcns',@gaplotshowpopulation);

4 Run the optimization using options:

[x,fval] = ga(@lincontest6,2,A,b,[],[],lb,[],[],options);

A plot window appears showing the linear constraints, bounds, level curves of
the objective function, and initial distribution of the population:

You can see that the initial population is biased to lie on the constraints.
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The population eventually concentrates around the minimum point:

Setting the Population Size
The Population size field in Population options determines the size of the
population at each generation. Increasing the population size enables the
genetic algorithm to search more points and thereby obtain a better result.
However, the larger the population size, the longer the genetic algorithm
takes to compute each generation.

Note You should set Population size to be at least the value of Number
of variables, so that the individuals in each population span the space
being searched.

You can experiment with different settings for Population size that return
good results without taking a prohibitive amount of time to run.
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Fitness Scaling
Fitness scaling converts the raw fitness scores that are returned by the
fitness function to values in a range that is suitable for the selection function.
The selection function uses the scaled fitness values to select the parents of
the next generation. The selection function assigns a higher probability of
selection to individuals with higher scaled values.

The range of the scaled values affects the performance of the genetic
algorithm. If the scaled values vary too widely, the individuals with the
highest scaled values reproduce too rapidly, taking over the population gene
pool too quickly, and preventing the genetic algorithm from searching other
areas of the solution space. On the other hand, if the scaled values vary only a
little, all individuals have approximately the same chance of reproduction and
the search will progress very slowly.

The default fitness scaling option, Rank, scales the raw scores based on the
rank of each individual instead of its score. The rank of an individual is its
position in the sorted scores: the rank of the most fit individual is 1, the next
most fit is 2, and so on. The rank scaling function assigns scaled values so that

• The scaled value of an individual with rank n is proportional to 1 / n .

• The sum of the scaled values over the entire population equals the number
of parents needed to create the next generation.

Rank fitness scaling removes the effect of the spread of the raw scores.

The following plot shows the raw scores of a typical population of 20
individuals, sorted in increasing order.
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The following plot shows the scaled values of the raw scores using rank
scaling.

0 5 10 15 20
0.5

1

1.5

2

2.5

3

3.5

4

4.5
Scaled Values Using Rank Scaling

S
ca

le
d 

va
lu

e

Sorted individuals

Because the algorithm minimizes the fitness function, lower raw scores have
higher scaled values. Also, because rank scaling assigns values that depend
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only on an individual’s rank, the scaled values shown would be the same for
any population of size 20 and number of parents equal to 32.

Comparing Rank and Top Scaling
To see the effect of scaling, you can compare the results of the genetic
algorithm using rank scaling with one of the other scaling options, such as
Top. By default, top scaling assigns 40 percent of the fittest individuals to the
same scaled value and assigns the rest of the individuals to value 0. Using
the default selection function, only 40 percent of the fittest individuals can
be selected as parents.

The following figure compares the scaled values of a population of size 20 with
number of parents equal to 32 using rank and top scaling.
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Because top scaling restricts parents to the fittest individuals, it creates
less diverse populations than rank scaling. The following plot compares the
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variances of distances between individuals at each generation using rank
and top scaling.
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Selection
The selection function chooses parents for the next generation based on their
scaled values from the fitness scaling function. An individual can be selected
more than once as a parent, in which case it contributes its genes to more than
one child. The default selection option, Stochastic uniform, lays out a line
in which each parent corresponds to a section of the line of length proportional
to its scaled value. The algorithm moves along the line in steps of equal size.
At each step, the algorithm allocates a parent from the section it lands on.

A more deterministic selection option is Remainder, which performs two steps:

• In the first step, the function selects parents deterministically according
to the integer part of the scaled value for each individual. For example,
if an individual’s scaled value is 2.3, the function selects that individual
twice as a parent.
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• In the second step, the selection function selects additional parents using
the fractional parts of the scaled values, as in stochastic uniform selection.
The function lays out a line in sections, whose lengths are proportional to
the fractional part of the scaled value of the individuals, and moves along
the line in equal steps to select the parents.

Note that if the fractional parts of the scaled values all equal 0, as can
occur using Top scaling, the selection is entirely deterministic.

Reproduction Options
Reproduction options control how the genetic algorithm creates the next
generation. The options are

• Elite count — The number of individuals with the best fitness values
in the current generation that are guaranteed to survive to the next
generation. These individuals are called elite children. The default value
of Elite count is 2.

When Elite count is at least 1, the best fitness value can only decrease
from one generation to the next. This is what you want to happen, since the
genetic algorithm minimizes the fitness function. Setting Elite count to a
high value causes the fittest individuals to dominate the population, which
can make the search less effective.

• Crossover fraction — The fraction of individuals in the next generation,
other than elite children, that are created by crossover. “Setting the
Crossover Fraction” on page 6-38 describes how the value of Crossover
fraction affects the performance of the genetic algorithm.

Mutation and Crossover
The genetic algorithm uses the individuals in the current generation to create
the children that make up the next generation. Besides elite children, which
correspond to the individuals in the current generation with the best fitness
values, the algorithm creates

• Crossover children by selecting vector entries, or genes, from a pair of
individuals in the current generation and combines them to form a child

• Mutation children by applying random changes to a single individual in the
current generation to create a child
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Both processes are essential to the genetic algorithm. Crossover enables the
algorithm to extract the best genes from different individuals and recombine
them into potentially superior children. Mutation adds to the diversity of
a population and thereby increases the likelihood that the algorithm will
generate individuals with better fitness values.

See “Creating the Next Generation” on page 3-22 for an example of how the
genetic algorithm applies mutation and crossover.

You can specify how many of each type of children the algorithm creates as
follows:

• Elite count, in Reproduction options, specifies the number of elite
children.

• Crossover fraction, in Reproduction options, specifies the fraction of
the population, other than elite children, that are crossover children.

For example, if the Population size is 20, the Elite count is 2, and the
Crossover fraction is 0.8, the numbers of each type of children in the next
generation are as follows:

• There are two elite children.

• There are 18 individuals other than elite children, so the algorithm rounds
0.8*18 = 14.4 to 14 to get the number of crossover children.

• The remaining four individuals, other than elite children, are mutation
children.

Setting the Amount of Mutation
The genetic algorithm applies mutations using the option that you specify
on the Mutation function pane. The default mutation option, Gaussian,
adds a random number, or mutation, chosen from a Gaussian distribution,
to each entry of the parent vector. Typically, the amount of mutation, which
is proportional to the standard deviation of the distribution, decreases at
each new generation. You can control the average amount of mutation that
the algorithm applies to a parent in each generation through the Scale and
Shrink options:
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• Scale controls the standard deviation of the mutation at the first
generation, which is Scale multiplied by the range of the initial population,
which you specify by the Initial range option.

• Shrink controls the rate at which the average amount of mutation
decreases. The standard deviation decreases linearly so that its final
value equals 1 - Shrink times its initial value at the first generation. For
example, if Shrink has the default value of 1, then the amount of mutation
decreases to 0 at the final step.

You can see the effect of mutation by selecting the plot options Distance and
Range, and then running the genetic algorithm on a problem such as the
one described in “Example: Rastrigin’s Function” on page 3-8. The following
figure shows the plot.
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The upper plot displays the average distance between points in each
generation. As the amount of mutation decreases, so does the average distance
between individuals, which is approximately 0 at the final generation. The
lower plot displays a vertical line at each generation, showing the range
from the smallest to the largest fitness value, as well as mean fitness value.
As the amount of mutation decreases, so does the range. These plots show
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that reducing the amount of mutation decreases the diversity of subsequent
generations.

For comparison, the following figure shows the plots for Distance and Range
when you set Shrink to 0.5.
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With Shrink set to 0.5, the average amount of mutation decreases by a factor
of 1/2 by the final generation. As a result, the average distance between
individuals decreases by approximately the same factor.

Setting the Crossover Fraction
The Crossover fraction field, in the Reproduction options, specifies the
fraction of each population, other than elite children, that are made up of
crossover children. A crossover fraction of 1 means that all children other than
elite individuals are crossover children, while a crossover fraction of 0 means
that all children are mutation children. The following example show that
neither of these extremes is an effective strategy for optimizing a function.
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The example uses the fitness function whose value at a point is the sum of the
absolute values of the coordinates at the points. That is,

You can define this function as an anonymous function by setting Fitness
function to

@(x) sum(abs(x))

To run the example,

• Set Fitness function to @(x) sum(abs(x)).

• Set Number of variables to 10.

• Set Initial range to [-1; 1].

• Select Best fitness and Distance in the Plot functions pane.

Run the example with the default value of 0.8 for Crossover fraction, in
the Options > Reproduction pane. This returns the best fitness value of
approximately 0.2 and displays the following plots.
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Crossover Without Mutation
To see how the genetic algorithm performs when there is no mutation, set
Crossover fraction to 1.0 and click Start. This returns the best fitness
value of approximately 1.3 and displays the following plots.
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In this case, the algorithm selects genes from the individuals in the initial
population and recombines them. The algorithm cannot create any new genes
because there is no mutation. The algorithm generates the best individual
that it can using these genes at generation number 8, where the best fitness
plot becomes level. After this, it creates new copies of the best individual,
which are then are selected for the next generation. By generation number
17, all individuals in the population are the same, namely, the best individual.
When this occurs, the average distance between individuals is 0. Since the
algorithm cannot improve the best fitness value after generation 8, it stalls
after 50 more generations, because Stall generations is set to 50.

Mutation Without Crossover
To see how the genetic algorithm performs when there is no crossover, set
Crossover fraction to 0 and click Start. This returns the best fitness value
of approximately 3.5 and displays the following plots.
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In this case, the random changes that the algorithm applies never improve the
fitness value of the best individual at the first generation. While it improves
the individual genes of other individuals, as you can see in the upper plot by
the decrease in the mean value of the fitness function, these improved genes
are never combined with the genes of the best individual because there is no
crossover. As a result, the best fitness plot is level and the algorithm stalls at
generation number 50.

Comparing Results for Varying Crossover Fractions
The demo deterministicstudy.m, which is included in the software,
compares the results of applying the genetic algorithm to Rastrigin’s function
with Crossover fraction set to 0, .2, .4, .6, .8, and 1. The demo runs for
10 generations. At each generation, the demo plots the means and standard
deviations of the best fitness values in all the preceding generations, for each
value of the Crossover fraction.
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To run the demo, enter

deterministicstudy

at the MATLAB® prompt. When the demo is finished, the plots appear as in
the following figure.
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The lower plot shows the means and standard deviations of the best fitness
values over 10 generations, for each of the values of the crossover fraction.
The upper plot shows a color-coded display of the best fitness values in each
generation.

For this fitness function, setting Crossover fraction to 0.8 yields the
best result. However, for another fitness function, a different setting for
Crossover fraction might yield the best result.
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Global vs. Local Minima
Sometimes the goal of an optimization is to find the global minimum or
maximum of a function—a point where the function value is smaller or larger
at any other point in the search space. However, optimization algorithms
sometimes return a local minimum—a point where the function value is
smaller than at nearby points, but possibly greater than at a distant point
in the search space. The genetic algorithm can sometimes overcome this
deficiency with the right settings.

As an example, consider the following function

f x
x

x

x x

( )
exp ,

exp( ) ( )( )

=
− −⎛

⎝⎜
⎞
⎠⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ ≤

− − + − −

20
20

1 20 22

2
for 

ffor x >

⎧

⎨
⎪⎪

⎩
⎪
⎪ 20.

The following figure shows a plot of the function.
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The function has two local minima, one at x = 0, where the function value is
–1, and the other at x = 21, where the function value is –1 – 1/e. Since the
latter value is smaller, the global minimum occurs at x = 21.
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Running the Genetic Algorithm on the Example
To run the genetic algorithm on this example,

1 Copy and paste the following code into a new M-file in the MATLAB Editor.

function y = two_min(x)
if x<=20

y = -exp(-(x/20).^2);
else

y = -exp(-1)+(x-20)*(x-22);
end

2 Save the file as two_min.m in a directory on the MATLAB path.

3 In the Optimization Tool,

• Set Fitness function to @two_min.

• Set Number of variables to 1.

• Click Start.

The genetic algorithm returns a point very close to the local minimum at x = 0.
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The following custom plot shows why the algorithm finds the local minimum
rather than the global minimum. The plot shows the range of individuals in
each generation and the best individual.
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Note that all individuals are between -2 and 2.5. While this range is larger
than the default Initial range of [0;1], due to mutation, it is not large
enough to explore points near the global minimum at x = 21.

One way to make the genetic algorithm explore a wider range of points—that
is, to increase the diversity of the populations—is to increase the Initial
range. The Initial range does not have to include the point x = 21, but it
must be large enough so that the algorithm generates individuals near x = 21.
Set Initial range to [0;15] as shown in the following figure.

6-46



Genetic Algorithm Examples

Then click Start. The genetic algorithm returns a point very close to 21.

6-47



6 Using the Genetic Algorithm

This time, the custom plot shows a much wider range of individuals. By the
second generation there are individuals greater than 21, and by generation
12, the algorithm finds a best individual that is approximately equal to 21.
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Using a Hybrid Function
A hybrid function is an optimization function that runs after the genetic
algorithm terminates in order to improve the value of the fitness function.
The hybrid function uses the final point from the genetic algorithm as its
initial point. You can specify a hybrid function in Hybrid function options.

This example uses Optimization Toolbox™ function fminunc, an
unconstrained minimization function. The example first runs the genetic
algorithm to find a point close to the optimal point and then uses that point as
the initial point for fminunc.

The example finds the minimum of Rosenbrock’s function, which is defined by

f x x x x x( , ) ( ) .1 2 2 1
2 2

1
2100 1= −( ) + −

The following figure shows a plot of Rosenbrock’s function.
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The software provides an M-file, dejong2fcn.m, that computes Rosenbrock’s
function. To see a demo of this example, enter

hybriddemo

at the MATLAB prompt.

To explore the example, first enter optimtool('ga') to open the Optimization
Tool to the ga solver. Enter the following settings:

• Set Fitness function to @dejong2fcn.

• Set Number of variables to 2.

• Set Population size to 10.
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Before adding a hybrid function, click Start to run the genetic algorithm by
itself. The genetic algorithm displays the following results in the Run solver
and view results pane:

The final point is close to the true minimum at (1, 1). You can improve this
result by setting Hybrid function to fminunc (in the Hybrid function
options).

The function fminunc uses the final point of the genetic algorithm as its
initial point. It returns a more accurate result, as shown in the Run solver
and view results pane.
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You can set options for the hybrid function separately from the calling
function. Use optimset or psoptimset to create the structure:

hybridopts = optimset('display','iter','LargeScale','off');

In the Optimization Tool enter the name of your options structure in the
Options box under Hybrid function:

At the command line, the syntax is as follows:

options = gaoptimset('HybridFcn',{@fminunc,hybridopts});

hybridopts must exist before you set options.
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Setting the Maximum Number of Generations
The Generations option in Stopping criteria determines the maximum
number of generations the genetic algorithm runs for—see “Stopping
Conditions for the Algorithm” on page 3-24. Increasing the Generations
option often improves the final result.

As an example, change the settings in the Optimization Tool as follows:

• Set Fitness function to @rastriginsfcn.

• Set Number of variables to 10.

• Select Best fitness in the Plot functions pane.

• Set Generations to Inf.

• Set Stall generations to Inf.

• Set Stall time to Inf.

Run the genetic algorithm for approximately 300 generations and click
Stop. The following figure shows the resulting best fitness plot after 300
generations.
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Note that the algorithm stalls at approximately generation number 170—that
is, there is no immediate improvement in the fitness function after generation
170. If you restore Stall generations to its default value of 50, the algorithm
would terminate at approximately generation number 230. If the genetic
algorithm stalls repeatedly with the current setting for Generations, you
can try increasing both the Generations and Stall generations options
to improve your results. However, changing other options might be more
effective.

Note When Mutation function is set to Gaussian, increasing the value
of Generations might actually worsen the final result. This can occur
because the Gaussian mutation function decreases the average amount of
mutation in each generation by a factor that depends on the value specified
in Generations. Consequently, the setting for Generations affects the
behavior of the algorithm.

Vectorizing the Fitness Function
The genetic algorithm usually runs faster if you vectorize the fitness function.
This means that the genetic algorithm only calls the fitness function once, but
expects the fitness function to compute the fitness for all individuals in the
current population at once. To vectorize the fitness function,

• Write the M-file that computes the function so that it accepts a matrix with
arbitrarily many rows, corresponding to the individuals in the population.
For example, to vectorize the function

f x x x x x x x x( , )1 2 1
2

1 2 1 2
2

22 6 6= − + + −

write the M-file using the following code:

z =x(:,1).^2 - 2*x(:,1).*x(:,2) + 6*x(:,1) + x(:,2).^2 - 6*x(:,2);

The colon in the first entry of x indicates all the rows of x, so that x(:, 1)
is a vector. The .^ and .* operators perform element-wise operations on
the vectors.

• In the Vectorize pane, set the Fitness function is vectorized option
to On.
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Note The fitness function must accept an arbitrary number of rows to use
the Vectorize option.

The following comparison, run at the command line, shows the improvement
in speed with Vectorize set to On.

tic;ga(@rastriginsfcn,20);toc

elapsed_time =

4.3660
options=gaoptimset('Vectorize','on');
tic;ga(@rastriginsfcn,20,[],[],[],[],[],[],[],options);toc

elapsed_time =

0.5810

If there are nonlinear constraints, the objective function and the nonlinear
constraints all need to be vectorized in order for the algorithm to compute in
a vectorized manner.

Constrained Minimization Using ga
Suppose you want to minimize the simple fitness function of two variables
x1 and x2,

min ( ) ( )
x

f x x x x= −( ) + −100 11
2

2
2

1
2

subject to the following nonlinear inequality constraints and bounds

x x x x
x x

x
x

1 2 1 2

1 2

1

2

1 5 0
10 0
0 1
0 13

⋅ + − + ≤
− ⋅ ≤

≤ ≤
≤ ≤

. (nonlinear constraiint)
(nonlinear constraint)
(bound)
(bound)
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Begin by creating the fitness and constraint functions. First, create an M-file
named simple_fitness.m as follows:

function y = simple_fitness(x)
y = 100*(x(1)^2 - x(2))^2 + (1 - x(1))^2;

The genetic algorithm function, ga, assumes the fitness function will take one
input x, where x has as many elements as the number of variables in the
problem. The fitness function computes the value of the function and returns
that scalar value in its one return argument, y.

Then create an M-file, simple_constraint.m, containing the constraints

function [c, ceq] = simple_constraint(x)
c = [1.5 + x(1)*x(2) + x(1) - x(2);...
-x(1)*x(2) + 10];
ceq = [];

The ga function assumes the constraint function will take one input x, where
x has as many elements as the number of variables in the problem. The
constraint function computes the values of all the inequality and equality
constraints and returns two vectors, c and ceq, respectively.

To minimize the fitness function, you need to pass a function handle to the
fitness function as the first argument to the ga function, as well as specifying
the number of variables as the second argument. Lower and upper bounds
are provided as LB and UB respectively. In addition, you also need to pass a
function handle to the nonlinear constraint function.

ObjectiveFunction = @simple_fitness;

nvars = 2; % Number of variables

LB = [0 0]; % Lower bound

UB = [1 13]; % Upper bound

ConstraintFunction = @simple_constraint;

[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB,UB,ConstraintFunction)

Warning: 'mutationgaussian' mutation function

is for unconstrained minimization only;

using @mutationadaptfeasible mutation function.

Set @mutationadaptfeasible as MutationFcn options

using GAOPTIMSET.
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Optimization terminated: current tolerance on f(x) 1e-007

is less than options.TolFun and constraint violation is

less than options.TolCon.

x =

0.8122 12.3122

fval =

1.3578e+004

Note For the constrained minimization problem, the ga function changed
the mutation function to @mutationadaptfeasible. The default mutation
function, @mutationgaussian, is only appropriate for unconstrained
minimization problems.

The genetic algorithm solver handles linear constraints and bounds differently
from nonlinear constraints. All the linear constraints and bounds are satisfied
throughout the optimization. However, ga may not satisfy all the nonlinear
constraints at every generation. If ga converges to a solution, the nonlinear
constraints will be satisfied at that solution.

ga uses the mutation and crossover functions to produce new individuals at
every generation. ga satisfies linear and bound constraints by using mutation
and crossover functions that only generate feasible points. For example, in
the previous call to ga, the default mutation function mutationguassian will
not satisfy the linear constraints and so the mutationadaptfeasible is used
instead. If you provide a custom mutation function, this custom function must
only generate points that are feasible with respect to the linear and bound
constraints. All the included crossover functions generate points that satisfy
the linear constraints and bounds except the crossoverheuristic function.

Specify mutationadaptfeasible as the mutation function for the
minimization problem by using the gaoptimset function.

options = gaoptimset('MutationFcn',@mutationadaptfeasible);

Next run the ga solver.
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[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB,UB,ConstraintFunction,options)

Optimization terminated: current tolerance on f(x) 1e-007 is less than options.TolFun

and constraint violation is less than options.TolCon.

x =

0.8122 12.3122

fval =

1.3578e+004

Now, use the gaoptimset function to create an options structure that will
select two plot functions. The first plot function is gaplotbestf, which plots
the best and mean score of the population at every generation. The second
plot function is gaplotmaxconstr, which plots the maximum constraint
violation of nonlinear constraints at every generation. You can also visualize
the progress of the algorithm by displaying information to the command
window using the 'Display' option.

options = gaoptimset(options,'PlotFcns',{@gaplotbestf,@gaplotmaxconstr},'Display','iter');

Rerun the ga solver.

[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],...

LB,UB,ConstraintFunction,options)

Best max Stall

Generation f-count f(x) constraint Generations

1 849 14915.8 0 0

2 1567 13578.3 0 0

3 2334 13578.3 0 1

4 3043 13578.3 0 2

5 3752 13578.3 0 3

Optimization terminated: current tolerance on f(x) 1e-009

is less than options.TolFun and constraint violation is

less than options.TolCon.

x =

0.8122 12.3123

fval =

1.3578e+004
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You can provide a start point for the minimization to the ga function by
specifying the InitialPopulation option. The ga function will use the
first individual from InitialPopulation as a start point for a constrained
minimization.

X0 = [0.5 0.5]; % Start point (row vector)

options = gaoptimset(options,'InitialPopulation',X0);

Now, rerun the ga solver.

[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],...

LB,UB,ConstraintFunction,options)

Best max Stall

Generation f-count f(x) constraint Generations

1 965 13579.6 0 0

2 1728 13578.2 1.776e-015 0

3 2422 13578.2 0 0

Optimization terminated: current tolerance on f(x) 1e-007

is less than options.TolFun and constraint violation is

less than options.TolCon.

x =

0.8122 12.3122
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fval =

1.3578e+004

Vectorized Constraints
If there are nonlinear constraints, the objective function and the nonlinear
constraints all need to be vectorized in order for the algorithm to compute in
a vectorized manner.

“Vectorizing the Objective and Constraint Functions” on page 5-42 contains
an example of how to vectorize both for the solver patternsearch. The syntax
is nearly identical for ga. The only difference is that patternsearch can have
its patterns appear as either row or column vectors; the corresponding vectors
for ga are the population vectors, which are always rows.
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Parallel Computing with the Genetic Algorithm

In this section...

“Parallel Evaluation of Populations” on page 6-61

“How to Use Parallel Computing with ga” on page 6-61

“Implementation of Parallel Genetic Algorithm” on page 6-63

“Parallel Computing Considerations” on page 6-64

Parallel Evaluation of Populations
Parallel computing is the technique of using multiple processors on a single
problem. The reason to use parallel computing is to speed computations.

The Genetic Algorithm and Direct Search Toolbox™ solver ga can
automatically distribute the evaluation of objective and nonlinear constraint
functions associated with a population to multiple processors. ga uses parallel
computing under the following conditions:

• You have a license for Parallel Computing Toolbox™ software.

• Parallel computing is enabled with matlabpool, a Parallel Computing
Toolbox function.

• The following options are set using gaoptimset:

- Vectorized is 'off' (default)

- UseParallel is 'always'

When these conditions hold, the solver computes the objective function and
nonlinear constraint values of the individuals in a population in parallel.

Currently, UseParallel cannot be accessed using the Optimization Tool GUI.

How to Use Parallel Computing with ga

• “Using Parallel Computing with Multicore Processors” on page 6-62

• “Using Parallel Computing with a Multiprocessor Network” on page 6-62
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Using Parallel Computing with Multicore Processors
If you have a multicore processor, you might see speedup using parallel
processing. You can establish a matlabpool of up to 4 parallel workers with a
basic Parallel Computing Toolbox license.

Suppose you have a dual-core processor, and wish to use parallel computing:

• Enter

matlabpool open 2

at the command line. The 2 specifies the number of processors to use.

• Enter

options = gaoptimset('UseParallel','always');

When you run an applicable solver with options, applicable solvers
automatically use parallel computing.

To stop computing optimizations in parallel, set UseParallel to 'never'. To
halt all parallel computation, enter

matlabpool close

Using Parallel Computing with a Multiprocessor Network
If you have multiple processors on a network, use Parallel Computing Toolbox
functions and MATLAB® Distributed Computing Server™ software to
establish parallel computation. Here are the steps to take:

1 Obtain a license for Parallel Computing Toolbox functions and MATLAB
Distributed Computing Server software.

2 Configure your system for parallel processing. See the Parallel Computing
Toolbox documentation, or MATLAB Distributed Computing Server System
Administrator’s Guide.

In particular, if network_file_path is the network path to your objective
or constraint functions, enter

pctRunOnAll('addpath network_file_path')
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so the worker processors can access your objective or constraint M-files.

Check whether an M-file is on the path of every worker by entering

pctRunOnAll('which filename')

If any worker does not have a path to the M-file, it reports

filename not found.

3 At the command line enter

matlabpool open conf

or

matlabpool open conf n

where conf is your configuration, and n is the number of processors you
wish to use.

4 Enter

options = gaoptimset('UseParallel','always');

Once your parallel computing environment is established, applicable solvers
automatically use parallel computing whenever called with options.

To stop computing optimizations in parallel, set UseParallel to 'never'. To
halt all parallel computation, enter

matlabpool close

Implementation of Parallel Genetic Algorithm
Population generation is implemented in the ga solver by using the Parallel
Computing Toolbox function parfor. parfor distributes the evaluation of
objective and constraint functions among multiple processes or processors.

The limitations on options, listed in “Parallel Evaluation of Populations” on
page 6-61, arise partly from limitations of parfor, and partly from the nature
of parallel processing:
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• Vectorized determines whether an entire population is evaluated with one
function call, instead of having each member of a population evaluated in a
loop. If Vectorized is 'on', it is not possible to distribute the evaluation of
the function using parfor, since the evaluation is not done in a loop.

More caveats related to parfor are listed in the “Limitations” section of the
Parallel Computing Toolbox documentation.

Parallel Computing Considerations
The “Improving Performance with Parallel Computing” section of the
Optimization Toolbox™ documentation contains information on factors that
affect the speed of parallel computations, factors that affect the results of
parallel computations, and searching for global optima. Those considerations
also apply to parallel computing with pattern search.

Additionally, there are considerations having to do with random numbers
that apply to Genetic Algorithm and Direct Search Toolbox functions.
Random number sequences in MATLAB® are pseudorandom, determined
from a “seed,” an initial setting. Parallel computations use seeds that are
not necessarily controllable or reproducible. For example, there is a default
global setting on each instance of MATLAB that determines the current seed
for random sequences.

Parallel population generation gives nonreproducible results. The
pseudorandom sequences cannot be guaranteed to be the same on different
runs for many reasons:

• Other functions running on a processor may use random numbers,
changing the generated sequences for ga.

• Different processors have different conditions, so they may have different
sequences.

• The mapping of processor to generated or evaluated individuals may
change from run to run.

• A hybrid function run after ga may have a different initial condition.

ga may have a hybrid function that runs after it finishes; see “Using a Hybrid
Function” on page 6-49. If you want the hybrid function to take advantage of
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parallel computation, you must set its options separately so that UseParallel
is 'always'. If the hybrid function is patternsearch, there are two other
options that must be set so that patternsearch runs in parallel:

• Cache must be set to 'off' (default).

• CompletePoll must be set to 'on'.

If the hybrid function is fmincon, the following options must be set in order
to take advantage of parallel gradient estimation:

• The option GradObj must not be set to 'on' — it can be 'off' or [].

• Or, if there is a nonlinear constraint function, the option GradConstr must
not be set to 'on'— it can be 'off' or [].

To find out how to write options for the hybrid function, see “Using a Hybrid
Function” on page 6-49 or “Hybrid Function Options” on page 9-40.
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Using the Simulated Annealing and Threshold Acceptance
Algorithms from the Command Line

In this section...

“Running simulannealbnd and threshacceptbnd with the Default Options”
on page 7-2

“Setting Options for simulannealbnd and threshacceptbnd at the Command
Line” on page 7-3

“Reproducing Your Results” on page 7-5

Running simulannealbnd and threshacceptbnd with
the Default Options
To run either the simulated annealing or threshold acceptance algorithms
with the default options, call the corresponding function with the syntax

[x,fval] = simulannealbnd(@objfun,x0)
[x,fval] = threshacceptbnd(@objfun,x0)

The input arguments to simulannealbnd and threshacceptbnd are

• @objfun — A function handle to the M-file that computes the objective
function. “Writing M-Files for Functions You Want to Optimize” on page
1-3 explains how to write this M-file.

• x0 — The initial guess of the optimal argument to the objective function.

The output arguments are

• x — The final point.

• fval — The value of the objective function at x.

For a description of additional input and output arguments, see the reference
pages for simulannealbnd and threshacceptbnd.

You can run the example described in “Example: Minimizing De Jong’s Fifth
Function” on page 4-8 from the command line with the simulated annealing
algorithm by entering
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[x,fval] = simulannealbnd(@dejong5fcn, [0 0])

This returns

x =
-31.9564 -15.9755

fval =
5.9288

Additional Output Arguments
To get more information about the performance of the algorithm, you can call
simulannealbnd or threshacceptbnd with the syntax

[x,fval,exitflag,output] = simulannealbnd(@objfun,x0)

Besides x and fval, this function returns the following additional output
arguments:

• exitflag — Flag indicating the reason the algorithm terminated

• output — Structure containing information about the performance of the
algorithm

See the simulannealbnd and threshacceptbnd reference pages for more
information about these arguments.

Setting Options for simulannealbnd and
threshacceptbnd at the Command Line
You can specify options by passing an options structure as an input argument
to either simulannealbnd and threshacceptbnd using the syntax

[x,fval] = simulannealbnd(@objfun,x0,[],[],options)

This syntax does not specify any lower or upper bound constraints.

You create the options structure using the function saoptimset:

options = saoptimset('simulannealbnd')

This returns the structure options with the default values for its fields:
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options =
AnnealingFcn: @annealingfast

TemperatureFcn: @temperatureexp
AcceptanceFcn: @acceptancesa

TolFun: 1.0000e-006
StallIterLimit: '500*numberofvariables'

MaxFunEvals: '3000*numberofvariables'
TimeLimit: Inf

MaxIter: Inf
ObjectiveLimit: -Inf

Display: 'final'
DisplayInterval: 10

HybridFcn: []
HybridInterval: 'end'

PlotFcns: []
PlotInterval: 1

OutputFcns: []
InitialTemperature: 100

ReannealInterval: 100
DataType: 'double'

These are the default values for simulannealbnd. To see the default values
for threshacceptbnd, run

options = saoptimset('threshacceptbnd')

The value of each option is stored in a field of the options structure, such as
options.ReannealInterval. You can display any of these values by entering
options followed by the name of the field. For example, to display the interval
for reannealing used for the simulated annealing algorithm, enter

options.ReannealInterval
ans =

100

To create an options structure with a field value that is different from the
default—for example, to set ReannealInterval to 300 instead of its default
value 100—enter

options = saoptimset('ReannealInterval', 300)
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This creates the options structure with all values set to their defaults, except
for ReannealInterval, which is set to 300.

If you now enter

simulannealbnd(@objfun,x0,[],[],options)

simulannealbnd runs the simulated annealing algorithm with a reannealing
interval of 300.

If you subsequently decide to change another field in the options structure,
such as setting PlotFcns to @saplotbestf, which plots the best objective
function value at each iteration, call saoptimset with the syntax

options = saoptimset(options,'PlotFcns',@saplotbestf)

This preserves the current values of all fields of options except for PlotFcns,
which is changed to @saplotbestf. Note that if you omit the input argument
options, saoptimset resets ReannealInterval to its default value 100.

You can also set both ReannealInterval and PlotFcns with the single
command

options = saoptimset('ReannealInterval',300, ...
'PlotFcns',@saplotbestf)

Reproducing Your Results
Because the simulated annealing and threshold acceptance algorithms
are stochastic—that is, they each makes random choices—you get slightly
different results each time you run them. The algorithms use the MATLAB®

uniform and normal random number generators, rand and randn, when
generating subsequent points and also when determining whether or not
to accept new points. Each time the algorithms call rand and randn, their
states are changed so that the next time they are called, they return different
random numbers.

If you need to reproduce your results exactly, call simulannealbnd or
threshacceptbnd with an output argument that contains the current states
of rand and randn and then reset the states to these values before running the
function again. For example, to reproduce the output of simulanneal applied
to De Jong’s fifth function, call simulannealbnd with the syntax
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[x,fval,exitflag,output] = simulannealbnd(@dejong5fcn,[0 0]);

Suppose the results are

x =
-32.0401 -16.1223

fval =
5.9288

The states of rand and randn are stored in two fields of output.

output =
iterations: 2041
funccount: 2058

message: [1x80 char]
randstate: [625x1 uint32]

randnstate: [2x1 double]
problemtype: 'unconstrained'
temperature: [2x1 double]

totaltime: 1.8226

Reset the states by entering

rand('twister', output.randstate);
randn('state', output.randnstate);

If you now run simulannealbnd a second time, you get the same results.

You can reproduce your run in the Optimization Tool by checking the box Use
random states from previous run in the Run solver and view results
section.

Note If you do not need to reproduce your results, it is better not to set the
states of rand and randn, so that you get the benefit of the randomness
in these algorithms.
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Parallel Computing with Simulated Annealing and
Threshold Acceptance Algorithms

The simulated annealing and threshold acceptance algorithms do not run in
parallel automatically. However, they can call hybrid functions that take
advantage of parallel computing. For information on how to set hybrid
function options, see “Hybrid Function Options” on page 9-50.

patternsearch can be used as a hybrid function that uses parallel
computation. You must set its options properly in order for it to compute in
parallel. For information on the options to set, see “Parallel Computing with
Pattern Search” on page 5-48.

fmincon can be used as a hybrid function that uses parallel computation
for estimating derivatives by parallel finite differences. You must set its
options properly in order for it to compute in parallel. For information on the
options to set, see “Parallel Computing for Optimization” in the Optimization
Toolbox™ User’s Guide.
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Simulated Annealing and Threshold Acceptance Examples
If you are viewing this documentation in the Help browser, click the following
link to see the demo Minimization Using Simulated Annealing And Threshold
Acceptance Algorithms. Or, from the MATLAB® command line, type
showdemo('saobjective').
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8 Multiobjective Optimization

What Is Multiobjective Optimization?

Introduction
You might need to formulate problems with more than one objective, since a
single objective with several constraints may not adequately represent the
problem being faced. If so, there is a vector of objectives,

F(x) = [F1(x), F2(x),...,Fm(x)],

that must be traded off in some way. The relative importance of these
objectives is not generally known until the system’s best capabilities are
determined and tradeoffs between the objectives fully understood. As the
number of objectives increases, tradeoffs are likely to become complex and
less easily quantified. The designer must rely on his or her intuition and
ability to express preferences throughout the optimization cycle. Thus,
requirements for a multiobjective design strategy must enable a natural
problem formulation to be expressed, and be able to solve the problem and
enter preferences into a numerically tractable and realistic design problem.

Multiobjective optimization is concerned with the minimization of a vector of
objectives F(x) that can be the subject of a number of constraints or bounds:

min ( ),

( ) , ,..., ; ( ) ,
x

i e i e

n
F x

G x i k G x i k
∈

= = ≤ = +
R

 subject to

   0 1 0 11,..., ; .k l x u ≤ ≤

Note that because F(x) is a vector, if any of the components of F(x) are
competing, there is no unique solution to this problem. Instead, the concept
of noninferiority [4] (also called Pareto optimality [1] and [2]) must be used
to characterize the objectives. A noninferior solution is one in which an
improvement in one objective requires a degradation of another. To define this
concept more precisely, consider a feasible region, Ω, in the parameter space. x

is an element of the n-dimensional real numbers x n∈ R that satisfies all the
constraints, i.e.,

Ω = ∈{ }x nR ,

subject to
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This allows definition of the corresponding feasible region for the objective
function space Λ:

Λ Ω= ∈ = ∈{ }y y F x xmR : ( ), .

The performance vector F(x) maps parameter space into objective function
space, as represented in two dimensions in the figure Mapping from
Parameter Space into Objective Function Space on page 8-3.

Figure 8-1: Mapping from Parameter Space into Objective Function Space

A noninferior solution point can now be defined.

Definition:Point x* ∈ Ω is a noninferior solution if for some neighborhood of

x* there does not exist a Δx such that x x* +( ) ∈Δ Ω and

F x x F x i m

F x x F x
i i

j j

* ( *), ,..., ,

* ( *)

+( ) ≤ =

+( ) <

Δ

Δ

  and

 for at le

1

aast one j.

In the two-dimensional representation of the figure Set of Noninferior
Solutions on page 8-4, the set of noninferior solutions lies on the curve
between C and D. Points A and B represent specific noninferior points.
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Figure 8-2: Set of Noninferior Solutions

A and B are clearly noninferior solution points because an improvement
in one objective, F1, requires a degradation in the other objective, F2, i.e.,
F1B < F1A, F2B > F2A.

Since any point in Ω that is an inferior point represents a point in which
improvement can be attained in all the objectives, it is clear that such a point
is of no value. Multiobjective optimization is, therefore, concerned with the
generation and selection of noninferior solution points.

Noninferior solutions are also called Pareto optima. A general goal in
multiobjective optimization is constructing the Pareto optima. The algorithm
used in gamultiobj is described in [3].
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Using gamultiobj

In this section...

“Problem Formulation” on page 8-5

“Using gamultiobj with Optimization Tool” on page 8-6

“Example — Multiobjective Optimization” on page 8-7

“Options and Syntax: Differences With ga” on page 8-13

Problem Formulation
The gamultiobj solver attempts to create a set of Pareto optima for a
multiobjective minimization. You may optionally set bounds and linear
constraints on variables. gamultiobj uses the genetic algorithm for finding
local Pareto optima. As in the ga function, you may specify an initial
population, or have the solver generate one automatically.

The fitness function for use in gamultiobj should return a vector of type
double. The population may be of type double, a bit string vector, or can be
a custom-typed vector. As in ga, if you use a custom population type, you
must write your own creation, mutation, and crossover functions that accept
inputs of that population type, and specify these functions in the following
fields, respectively:

• Creation function (CreationFcn)

• Mutation function (MutationFcn)

• Crossover function (CrossoverFcn)

You can set the initial population in a variety of ways. Suppose that you
choose a population of size m. (The default population size is 15 times the
number of variables n.) You can set the population:

• As an m-by-n matrix, where the rows represent m individuals.

• As a k-by-n matrix, where k < m. The remaining m – k individuals are
generated by a creation function.

• The entire population can be created by a creation function.
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Using gamultiobj with Optimization Tool
You can access gamultiobj from the Optimization Tool GUI. Enter

optimtool('gamultiobj')

at the command line, or enter optimtool and then choose gamultiobj from
the Solver menu. You can also launch the tool from the MATLAB® Start
menu as pictured:
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If the Quick Reference help pane is closed, you can open it by clicking
the “>>” button on the upper right of the GUI: . All the options
available are explained briefly in the help pane.

You can create an options structure in the Optimization Tool, export it to the
MATLAB workspace, and use the structure at the command line. For details,
see “Importing and Exporting Your Work” in the Optimization Toolbox™
documentation.

Example — Multiobjective Optimization
This example has a two-objective fitness function f(x), where x is also
two-dimensional:

function f = mymulti1(x)

f(1) = x(1)^4 - 10*x(1)^2+x(1)*x(2) + x(2)^4 - (x(1)^2)*(x(2)^2);
f(2) = x(2)^4 - (x(1)^2)*(x(2)^2) + x(1)^4 + x(1)*x(2);

Create an M-file for this function before proceeding.

Performing the Optimization with Optimization Tool
1 To define the optimization problem, launch the Optimization Tool, and

set it as pictured.
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2 Set the options for the problem as pictured.

3 Run the optimization by clicking Start under Run solver and view
results.

A plot appears in a figure window.
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This plot shows the tradeoff between the two components of f. It is plotted
in objective function space; see the figure Set of Noninferior Solutions on
page 8-4.

The results of the optimization appear in the following table containing both
objective function values and the value of the variables.
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You can sort the table by clicking a heading. Click the heading again to sort
it in the reverse order. The following figures show the result of clicking the
heading f1.
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Performing the Optimization at the Command Line
To perform the same optimization at the command line:

1 Set the options:

options = gaoptimset('PopulationSize',60,...
'ParetoFraction',0.7,'PlotFcn',@gaplotpareto);

2 Run the optimization using the options:

[x fval flag output population] = gamultiobj(@mymulti1,2,...
[],[],[],[],[-5,-5],[5,5],options);

Alternate Views
There are other ways of regarding the problem. The following figure contains
a plot of the level curves of the two objective functions, the Pareto frontier
calculated by gamultiobj (boxes), and the x-values of the true Pareto frontier
(diamonds connected by a nearly-straight line). The true Pareto frontier
points are where the level curves of the objective functions are parallel. They
were calculated by finding where the gradients of the objective functions are
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parallel. The figure is plotted in parameter space; see the figure Mapping
from Parameter Space into Objective Function Space on page 8-3.
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Contours of objective functions, and Pareto frontier

gamultiobj found the ends of the line segment, meaning it found the full
extent of the Pareto frontier.
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Options and Syntax: Differences With ga
The syntax and options for gamultiobj are similar to those for ga, with the
following differences:

• gamultiobj does not have nonlinear constraints, so its syntax has fewer
inputs.

• gamultiobj takes an option DistanceMeasureFcn, a function that assigns
a distance measure to each individual with respect to its neighbors.

• gamultiobj takes an option ParetoFraction, a number between 0 and 1
that specifies the fraction of the population on the best Pareto frontier to
be kept during the optimization. If there is only one Pareto frontier, this
option is ignored.

• gamultiobj uses only the Tournament selection function.

• gamultiobj uses elite individuals differently than ga. It sorts noninferior
individuals above inferior ones, so it uses elite individuals automatically.

• gamultiobj has only one hybrid function, fgoalattain.

• gamultiobj does not have a stall time limit.

• gamultiobj has different plot functions available.

• gamultiobj does not have a choice of scaling function.

8-13



8 Multiobjective Optimization

Parallel Computing with gamultiobj
Parallel computing with gamultiobj works almost exactly the same as with
ga. For detailed information, see “Parallel Computing with the Genetic
Algorithm” on page 6-61.

The difference between parallel computing with gamultiobj and ga has to
do with the hybrid function. gamultiobj allows only one hybrid function,
fgoalattain. This function is optionally launched after gamultiobj
finishes its run. Each individual in the calculated Pareto frontier, i.e., the
final population found by gamultiobj, becomes the starting point for an
optimization using fgoalattain. These optimizations are done in parallel.
The number of processors performing these optimizations is the smaller of the
number of individuals and the size of your matlabpool.

For fgoalattain to run in parallel, its options must be set correctly:

fgoalopts = optimset('UseParallel','always')
gaoptions = gaoptimset('HybridFcn',{@fgoalattain,fgoalopts});

Run gamultiobj with gaoptions, and fgoalattain runs in parallel. For
more information about setting the hybrid function, see “Hybrid Function
Options” on page 9-40.

gamultiobj calls fgoalattain using a parfor loop, so fgoalattain does
not estimate gradients in parallel when used as a hybrid function with
gamultiobj. This is because a parfor loop estimates gradients in parallel,
and inner iterations in a nested parfor loops do not run in parallel.
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Pattern Search Options

In this section...

“Optimization Tool vs. Command Line” on page 9-2

“Plot Options” on page 9-3

“Poll Options” on page 9-5

“Search Options” on page 9-8

“Mesh Options” on page 9-12

“Algorithm Settings” on page 9-13

“Cache Options” on page 9-13

“Stopping Criteria” on page 9-14

“Output Function Options” on page 9-15

“Display to Command Window Options” on page 9-17

“Vectorize Option” on page 9-18

“Parallel Option” on page 9-19

“Options Table for Pattern Search Algorithms” on page 9-19

Optimization Tool vs. Command Line
There are two ways to specify options for pattern search, depending on
whether you are using the Optimization Tool or calling the function
patternsearch at the command line:

• If you are using the Optimization Tool, you specify the options by selecting
an option from a drop-down list or by entering the value of the option in
the text field.

• If you are calling patternsearch from the command line, you specify the
options by creating an options structure using the function psoptimset,
as follows:

options = psoptimset('Param1',value1,'Param2',value2,...);
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See “Setting Options for patternsearch at the Command Line” on page
5-13 for examples.

In this section, each option is listed in two ways:

• By its label, as it appears in the Optimization Tool

• By its field name in the options structure

For example:

• Poll method refers to the label of the option in the Optimization Tool.

• PollMethod refers to the corresponding field of the options structure.

Plot Options
Plot options enable you to plot data from the pattern search while it is
running. When you select plot functions and run the pattern search, a plot
window displays the plots on separate axes. You can stop the algorithm at any
time by clicking the Stop button on the plot window.

Plot interval (PlotInterval) specifies the number of iterations between
consecutive calls to the plot function.

You can select any of the following plots in the Plot functions pane.

• Best function value (@psplotbestf) plots the best objective function
value.

• Function count (@psplotfuncount) plots the number of function
evaluations.

• Mesh size (@psplotmeshsize) plots the mesh size.

• Best point (@psplotbestx) plots the current best point.

• Max constraint (@psplotmaxconstr) plots the maximum nonlinear
constraint violation.

• Custom enables you to use your own plot function. To specify the plot
function using the Optimization Tool,

- Select Custom function.
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- Enter @myfun in the text box, where myfun is the name of your function.

“Structure of the Plot Functions” on page 9-4 describes the structure of
a plot function.

To display a plot when calling patternsearch from the command line, set the
PlotFcns field of options to be a function handle to the plot function. For
example, to display the best function value, set options as follows

options = psoptimset('PlotFcns', @psplotbestf);

To display multiple plots, use the syntax

options = psoptimset('PlotFcns', {@plotfun1, @plotfun2, ...});

where @plotfun1, @plotfun2, and so on are function handles to the plot
functions (listed in parentheses in the preceding list).

Structure of the Plot Functions
The first line of a plot function has the form

function stop = plotfun(optimvalues, flag)

The input arguments to the function are

• optimvalues — Structure containing information about the current state
of the solver. The structure contains the following fields:

- x — Current point

- iteration — Iteration number

- fval — Objective function value

- meshsize — Current mesh size

- funccount — Number of function evaluations

- method — Method used in last iteration

- TolFun — Tolerance on function value in last iteration

- TolX — Tolerance on x value in last iteration
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- nonlinineq — Nonlinear inequality constraints, displayed only when a
nonlinear constraint function is specified

- nonlineq — Nonlinear equality constraints, displayed only when a
nonlinear constraint function is specified

• flag — Current state in which the plot function is called. The possible
values for flag are

- init — Initialization state

- iter — Iteration state

- interrupt — Intermediate stage

- done — Final state

“Passing Extra Parameters” in the Optimization Toolbox™ User’s Guide
explains how to provide additional parameters to the function.

The output argument stop provides a way to stop the algorithm at the current
iteration. stop can have the following values:

• false — The algorithm continues to the next iteration.

• true — The algorithm terminates at the current iteration.

Poll Options
Poll options control how the pattern search polls the mesh points at each
iteration.

Poll method (PollMethod) specifies the pattern the algorithm uses to create
the mesh. There are two patterns for each of the two classes of direct search
algorithms: the generalized pattern search (GPS) algorithm and the mesh
adaptive direct search (MADS) algorithm.

These patterns are the Positive basis 2N and the Positive basis N+1:

• The default pattern, GPS Positive basis 2N, consists of the following 2N
vectors, where N is the number of independent variables for the objective
function.
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[1 0 0...0]
[0 1 0...0]
...
[0 0 0...1]
[–1 0 0...0]
[0 –1 0...0]
[0 0 0...–1].

For example, if the optimization problem has three independent variables,
the pattern consists of the following six vectors.

[1 0 0]
[0 1 0]
[0 0 1]
[–1 0 0]
[0 –1 0]
[0 0 –1].

• The pattern, MADS Positive basis 2N, consists of 2N randomly generated
vectors, where N is the number of independent variables for the objective
function. This is done by randomly generating N vectors which form a
linearly independent set, then using this first set and the negative of this
set gives 2N vectors. As shown above, the GPS Positive basis 2N pattern
is formed using the positive and negative of the linearly independent
identity, however, with the MADS Positive basis 2N, the pattern is
generated using a random permutation of an N-by-N linearly independent
lower triangular matrix that is regenerated at each iteration.

• The GPS Positive basis NP1 pattern consists of the following N + 1
vectors.

[1 0 0...0]
[0 1 0...0]
...
[0 0 0...1]
[–1 –1 –1...–1].

For example, if the objective function has three independent variables, the
pattern consists of the following four vectors.
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[1 0 0]
[0 1 0]
[0 0 1]
[–1 –1 –1].

• The pattern, MADS Positive basis N+1, consists of N randomly generated
vectors to form the positive basis, where N is the number of independent
variables for the objective function. Then, one more random vector
is generated, giving N+1 randomly generated vectors. Each iteration
generates a new pattern when the MADS Positive basis N+1 is selected.

Complete poll (CompletePoll) specifies whether all the points in the
current mesh must be polled at each iteration. Complete Poll can have
the values On or Off.

• If you set Complete poll to On, the algorithm polls all the points in the
mesh at each iteration and chooses the point with the smallest objective
function value as the current point at the next iteration.

• If you set Complete poll to Off, the default value, the algorithm stops the
poll as soon as it finds a point whose objective function value is less than
that of the current point. The algorithm then sets that point as the current
point at the next iteration.

Polling order (PollingOrder) specifies the order in which the algorithm
searches the points in the current mesh. The options are

• Random — The polling order is random.

• Success — The first search direction at each iteration is the direction in
which the algorithm found the best point at the previous iteration. After
the first point, the algorithm polls the mesh points in the same order as
Consecutive.

• Consecutive — The algorithm polls the mesh points in consecutive order,
that is, the order of the pattern vectors as described in “Poll Method” on
page 5-17.

See “Poll Options” on page 9-5 for more information.
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Search Options
Search options specify an optional search that the algorithm can perform at
each iteration prior to the polling. If the search returns a point that improves
the objective function, the algorithm uses that point at the next iteration and
omits the polling. Please note, if you have selected the same Search method
and Poll method, only the option selected in the Poll method will be used,
although both will be used when the options selected are different.

Complete search (CompleteSearch) applies when you set Search method
to GPS Positive basis Np1, GPS Positive basis 2N, MADS Positive
basis Np1, MADS Positive basis 2N, or Latin hypercube. Complete
search can have the values On or Off.

For GPS Positive basis Np1, MADS Positive basis Np1, GPS Positive
basis 2N, or MADS Positive basis 2N, Complete search has the same
meaning as the poll option Complete poll.

Search method (SearchMethod) specifies the optional search step. The
options are

• None ([]) (the default) specifies no search step.

• GPS Positive basis Np1 ('GPSPositiveBasisNp1') performs a search
step of a pattern search using the GPS Positive Basis Np1 option.

• GPS Positive basis 2N ('GPSPositiveBasis2N') performs a search step
of a pattern search using the GPS Positive Basis 2N option.

• MADS Positive basis Np1 ('MADSPositiveBasisNp1') performs a search
step of a pattern search using the MADS Positive Basis Np1option.

• MADS Positive basis 2N ('MADSPositiveBasis2N') performs a search
step of a pattern search using the MADS Positive Basis 2N option.

• Genetic Algorithm (@searchga) specifies a search using the genetic
algorithm. If you select Genetic Algorithm, two other options appear:

- Iteration limit — Positive integer specifying the number of iterations of
the pattern search for which the genetic algorithm search is performed.
The default for Iteration limit is 1.

- Options — Options structure for the genetic algorithm, which you can
set using gaoptimset.
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To change the default values of Iteration limit and Options at the
command line, use the syntax

options = psoptimset('SearchMethod',...
{@searchga,iterlim,optionsGA})

where iterlim is the value of Iteration limit and optionsGA is the
genetic algorithm options structure.

• Latin hypercube (@searchlhs) specifies a Latin hypercube search. The
way the search is performed depends on the setting for Complete search:

- If you set Complete search to On, the algorithm polls all the points that
are randomly generated at each iteration by the Latin hypercube search
and chooses the one with the smallest objective function value.

- If you set Complete search to Off (the default), the algorithm stops
the poll as soon as it finds one of the randomly generated points whose
objective function value is less than that of the current point, and
chooses that point for the next iteration.

If you select Latin hypercube, two other options appear:

- Iteration limit — Positive integer specifying the number of iterations
of the pattern search for which the Latin hypercube search is performed.
The default for Iteration limit is 1.

- Design level — A positive integer specifying the design level. The
number of points searched equals the Design level multiplied by the
number of independent variables for the objective function. The default
for Design level is 15.

To change the default values of Iteration limit and Design level at the
command line, use the syntax

options=psoptimset('SearchMethod', {@searchlhs,iterlim,level})

where iterlim is the value of Iteration limit and level is the value of
Design level.

• Nelder-Mead (@searchneldermead) specifies a search using fminsearch,
which uses the Nelder-Mead algorithm. If you select Nelder-Mead, two
other options appear:
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- Iteration limit — Positive integer specifying the number of iterations
of the pattern search for which the Nelder-Mead search is performed.
The default for Iteration limit is 1.

- Options — Options structure for the function fminsearch, which you
can create using the function optimset.

To change the default values of Iteration limit and Options at the
command line, use the syntax

options=psoptimset('SearchMethod',...
{@searchga,iterlim,optionsNM})

where iterlim is the value of Iteration limit and optionsNM is the
options structure.

• Custom enables you to write your own search function. To specify the search
function using the Optimization Tool,

- Set Search function to Custom.

- Set Function name to @myfun, where myfun is the name of your
function.

If you are using patternsearch, set

options = psoptimset('SearchMethod', @myfun);

To see a template that you can use to write your own search function, enter

edit searchfcntemplate

The following section describes the structure of the search function.

Structure of the Search Function
Your search function must have the following calling syntax.

function [successSearch,xBest,fBest,funccount] =
searchfcntemplate(fun,x,A,b,Aeq,beq,lb,ub, ...

optimValues,options)

The search function has the following input arguments:
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• fun — Objective function

• x — Current point

• A,b — Linear inequality constraints

• Aeq,beq — Linear equality constraints

• lb,ub — Lower and upper bound constraints

• optimValues — Structure that enables you to set search options. The
structure contains the following fields:

- x — Current point

- fval — Objective function value at x

- iteration — Current iteration number

- funccount — Counter for user function evaluation

- scale — Scale factor used to scale the design points

- problemtype — Flag passed to the search routines, indicating
whether the problem is 'unconstrained', 'boundconstraints', or
'linearconstraints'. This field is a subproblem type for nonlinear
constrained problems.

- meshsize — Current mesh size used in search step

- method — Method used in last iteration

• options — Pattern search options structure

The function has the following output arguments:

• successSearch — A Boolean identifier indicating whether the search is
successful or not

• xBest,fBest — Best point and best function value found by search method

Note If you set Search method to Genetic algorithm or Nelder-Mead,
we recommend that you leave Iteration limit set to the default value 1,
because performing these searches more than once is not likely to improve
results.
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• funccount — Number of user function evaluation in search method

See “Using a Search Method” on page 5-23 for an example.

Mesh Options
Mesh options control the mesh that the pattern search uses. The following
options are available.

Initial size (InitialMeshSize) specifies the size of the initial mesh, which is
the length of the shortest vector from the initial point to a mesh point. Initial
size should be a positive scalar. The default is 1.0.

Max size (MaxMeshSize) specifies a maximum size for the mesh. When the
maximum size is reached, the mesh size does not increase after a successful
iteration. Max size must be a positive scalar, and is only used when the GPS
algorithm is selected as the Poll or Search method. The default value is Inf.

Accelerator (MeshAccelerator) specifies whether the Contraction factor
is multiplied by 0.5 after each unsuccessful iteration. Accelerator can have
the values On or Off, the default.

Rotate (MeshRotate) is only applied when Poll method is set to GPS
Positive basis Np1. It specifies whether the mesh vectors are multiplied
by –1 when the mesh size is less than 1/100 of the mesh tolerance (minimum
mesh size TolMesh) after an unsuccessful poll. In other words, after the first
unsuccessful poll with small mesh size, instead of polling in directions ei (unit
positive directions) and –Σei, the algorithm polls in directions –ei and Σei.
Rotate can have the values Off or On (the default). When the problem has
equality constraints, Rotate is disabled.

Rotate is especially useful for discontinuous functions.

Note Changing the setting of Rotate has no effect on the poll when Poll
method is set to GPS Positive basis 2N, MADS Positive basis 2N, or
MADS Positive basis Np1.
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Scale (ScaleMesh) specifies whether the algorithm scales the mesh points
by carefully multiplying the pattern vectors by constants proportional to the
logarithms of the absolute values of components of the current point (or, for
unconstrained problems, of the initial point). Scale can have the values
Off or On (the default). When the problem has equality constraints, Scale
is disabled.

Expansion factor (MeshExpansion) specifies the factor by which the mesh
size is increased after a successful poll. The default value is 2.0, which
means that the size of the mesh is multiplied by 2.0 after a successful poll.
Expansion factor must be a positive scalar and is only used when a GPS
method is selected as the Poll or Search method.

Contraction factor (MeshContraction) specifies the factor by which the
mesh size is decreased after an unsuccessful poll. The default value is
0.5, which means that the size of the mesh is multiplied by 0.5 after an
unsuccessful poll. Contraction factor must be a positive scalar and is only
used when a GPS method is selected as the Poll or Search method.

See “Mesh Expansion and Contraction” on page 5-26 for more information.

Algorithm Settings
Algorithm settings define algorithmic specific parameters.

Parameters that can be specified for a nonlinear constraint algorithm include

• Initial penalty (InitialPenalty) — Specifies an initial value of the
penalty parameter that is used by the algorithm. Initial penalty must be
greater than or equal to 1.

• Penalty factor (PenaltyFactor) — Increases the penalty parameter when
the problem is not solved to required accuracy and constraints are not
satisfied. Penalty factor must be greater than 1.

Cache Options
The pattern search algorithm can keep a record of the points it has already
polled, so that it does not have to poll the same point more than once. If the
objective function requires a relatively long time to compute, the cache option
can speed up the algorithm. The memory allocated for recording the points is
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called the cache. This option should only be used for deterministic objective
functions, but not for stochastic ones.

Cache (Cache) specifies whether a cache is used. The options are On and Off,
the default. When you set Cache to On, the algorithm does not evaluate the
objective function at any mesh points that are within Tolerance of a point
in the cache.

Tolerance (CacheTol) specifies how close a mesh point must be to a point in
the cache for the algorithm to omit polling it. Tolerance must be a positive
scalar. The default value is eps.

Size (CacheSize) specifies the size of the cache. Size must be a positive
scalar. The default value is 1e4.

See “Using Cache” on page 5-32 for more information.

Stopping Criteria
Stopping criteria determine what causes the pattern search algorithm to stop.
Pattern search uses the following criteria:

Mesh tolerance (TolMesh) specifies the minimum tolerance for mesh size.
The algorithm stops if the mesh size becomes smaller than Mesh tolerance.
The default value is 1e-6.

Max iteration (MaxIter) specifies the maximum number of iterations the
algorithm performs. The algorithm stops if the number of iterations reaches
Max iteration. You can select either

• 100*numberofvariables — Maximum number of iterations is 100 times
the number of independent variables (the default).

• Specify — A positive integer for the maximum number of iterations

Max function evaluations (MaxFunEval) specifies the maximum number
of evaluations of the objective function. The algorithm stops if the number
of function evaluations reaches Max function evaluations. You can select
either
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• 2000*numberofvariables — Maximum number of function evaluations is
2000 times the number of independent variables.

• Specify — A positive integer for the maximum number of function
evaluations

Time limit (TimeLimit) specifies the maximum time in seconds the pattern
search algorithm runs before stopping. This also includes any specified pause
time for pattern search algorithms.

Bind tolerance (TolBind) specifies the minimum tolerance for the distance
from the current point to the boundary of the feasible region. Bind tolerance
specifies when a linear constraint is active. It is not a stopping criterion. The
default value is 1e-3.

X tolerance (TolX) specifies the minimum distance between the current
points at two consecutive iterations. The algorithm stops if the distance
between two consecutive points is less than X tolerance. The default value
is 1e-6.

Function tolerance (TolFun) specifies the minimum tolerance for the
objective function. After a successful poll, if the difference between the
function value at the previous best point and function value at the current
best point is less than the value of Function tolerance, the algorithm halts.
The default value is 1e-6.

See “Setting Tolerances for the Solver” on page 5-34 for an example.

Nonlinear constraint tolerance (TolCon) — The Nonlinear constraint
tolerance is not used as stopping criterion. It is used to determine the
feasibility with respect to nonlinear constraints.

Output Function Options
Output functions are functions that the pattern search algorithm calls at each
iteration. The following options are available:

• History to new window (@psoutputhistory) displays the history of
points computed by the algorithm in the MATLAB® Command Window at
each multiple of Interval iterations.
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• Custom enables you to write your own output function. To specify the
output function using the Optimization Tool,

- Select Custom function.

- Enter @myfun in the text box, where myfun is the name of your function.

If you are using patternsearch, set

options = psoptimset('OutputFcn', @myfun);

To see a template that you can use to write your own output function, enter

edit psoutputfcntemplate

at the MATLAB command prompt.

The following section describes the structure of the output function.

Structure of the Output Function
Your output function must have the following calling syntax:

[stop,options,optchanged] =
psoutputhistory(optimvalues,options,flag,interval)

The function has the following input arguments:

• optimvalues — Structure containing information about the current state
of the solver. The structure contains the following fields:

- x — Current point

- iteration — Iteration number

- fval — Objective function value

- meshsize — Current mesh size

- funccount — Number of function evaluations

- method — Method used in last iteration

- TolFun — Tolerance on function value in last iteration

- TolX — Tolerance on x value in last iteration
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- nonlinineq — Nonlinear inequality constraints, displayed only when a
nonlinear constraint function is specified

- nonlineq — Nonlinear equality constraints, displayed only when a
nonlinear constraint function is specified

• options — Options structure

• flag — Current state in which the output function is called. The possible
values for flag are

- init — Initialization state

- iter — Iteration state

- interrupt — Intermediate stage

- done — Final state

• interval — Optional interval argument

“Passing Extra Parameters” in the Optimization Toolbox User’s Guide explains
how to provide additional parameters to the output function.

The output function returns the following arguments to ga:

• stop — Provides a way to stop the algorithm at the current iteration. stop
can have the following values.

- false — The algorithm continues to the next iteration.

- true — The algorithm terminates at the current iteration.

• options — Options structure.

• optchanged — Flag indicating changes to options.

Display to Command Window Options
Level of display ('Display') specifies how much information is displayed
at the command line while the pattern search is running. The available
options are

• Off ('off') — No output is displayed.

• Iterative (’iter') — Information is displayed for each iteration.
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• Diagnose ('diagnose') — Information is displayed for each iteration. In
addition, the diagnostic lists some problem information and the options
that are changed from the defaults.

• Final ('final') — The reason for stopping is displayed.

Both Iterative and Diagnose display the following information:

• Iter — Iteration number

• FunEval — Cumulative number of function evaluations

• MeshSize — Current mesh size

• FunVal — Objective function value of the current point

• Method — Outcome of the current poll (with no nonlinear constraint
function specified). With a nonlinear constraint function, Method displays
the update method used after a subproblem is solved.

• Max Constraint — Maximum nonlinear constraint violation (displayed
only when a nonlinear constraint function has been specified)

The default value of Level of display is

• Off in the Optimization Tool

• 'final' in an options structure created using psoptimset

Vectorize Option
Objective function is vectorized specifies whether the computation of the
objective function is vectorized. When Objective function is vectorized is
Off, the algorithm calls the objective function on one point at a time as it loops
through all of the mesh points. When Objective function is vectorized is
On, the pattern search algorithm calls the objective function on all the points
in the mesh at once, i.e., in a single call to the objective function if either
Complete Poll or Complete Search is On.

If there are nonlinear constraints, the objective function and the nonlinear
constraints all need to be vectorized in order for the algorithm to compute in
a vectorized manner.
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Parallel Option
Specifies whether patternsearch computes applicable polls and searches in
parallel, using multiple processes or processors, or computes them serially.
Set UseParallel to 'always' to compute in parallel. Set UseParallel to
'never' to compute serially.

Options Table for Pattern Search Algorithms

Option Availability Table for GPS and MADS Algorithms

Option Description
Algorithm
Availability

Cache With Cache set to 'on',
patternsearch keeps
a history of the mesh
points it polls and does
not poll points close to
them again at subsequent
iterations. Use this option
if patternsearch runs
slowly because it is taking
a long time to compute
the objective function. If
the objective function is
stochastic, it is advised not
to use this option.

GPS, MADS

CacheSize Size of the cache, in number
of points.

GPS, MADS

CacheTol Positive scalar specifying
how close the current mesh
point must be to a point
in the cache in order for
patternsearch to avoid
polling it. Available if
'Cache' option is set to
'on'.

GPS, MADS
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Option Availability Table for GPS and MADS Algorithms (Continued)

Option Description
Algorithm
Availability

CompletePoll Complete poll around
current iterate. Evaluate
all the points in a poll step.

GPS, MADS

CompleteSearch Complete poll around
current iterate. Evaluate
all the points in a search
step.

GPS, MADS

Display Level of display to
Command Window.

GPS, MADS

InitialMeshSize Initial mesh size used in
pattern search algorithms.

GPS, MADS

InitialPenalty Initial value of the penalty
parameter.

GPS, MADS

MaxFunEvals Maximum number
of objective function
evaluations.

GPS, MADS

MaxIter Maximum number of
iterations.

GPS, MADS

MaxMeshSize Maximum mesh size used
in a poll/search step.

GPS, MADS

MeshAccelerator Accelerate mesh size
contraction.

GPS, MADS

MeshContraction Mesh contraction factor,
used when iteration is
unsuccessful.

GPS — Default
value is 0.5. MADS
— Default value
is 0.25 if MADS
algorithm is selected
for either the Poll
method or Search
method.
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Option Availability Table for GPS and MADS Algorithms (Continued)

Option Description
Algorithm
Availability

MeshExpansion Mesh expansion factor,
expands mesh when
iteration is successful.

GPS — Default
value is 2. MADS
— Default value is 4
if MADS algorithm
is selected for either
the Poll method or
Search method.

MeshRotate Rotate the pattern before
declaring a point to be
optimum.

GPS, MADS

OutputFcn User-specified function that
a pattern search calls at
each iteration.

GPS, MADS

PenaltyFactor Penalty update parameter. GPS, MADS

PlotFcn Specifies function to plot at
runtime.

GPS, MADS

PlotInterval Specifies that plot functions
will be called at every
interval.

GPS, MADS

PollingOrder Order in which search
directions are polled.

GPS only

PollMethod Polling strategy used in
pattern search.

GPS, MADS

ScaleMesh Automatic scaling of
variables.

GPS, MADS

SearchMethod Specifies search method
used in pattern search.

GPS, MADS
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Option Availability Table for GPS and MADS Algorithms (Continued)

Option Description
Algorithm
Availability

TimeLimit Total time (in seconds)
allowed for optimization.
Also includes any specified
pause time for pattern
search algorithms.

GPS, MADS

TolBind Binding tolerance used
to determine if linear
constraint is active.

GPS, MADS

TolCon Tolerance on nonlinear
constraints.

GPS, MADS

TolFun Tolerance on function value. GPS, MADS

TolMesh Tolerance on mesh size. GPS, MADS

TolX Tolerance on independent
variable.

GPS, MADS

UseParallel When 'always', compute
objective functions of a
poll or search in parallel.
Disable by setting to
'never'.

GPS, MADS

Vectorized Specifies whether functions
are vectorized.

GPS, MADS
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Genetic Algorithm Options

In this section...

“Optimization Tool vs. Command Line” on page 9-23

“Plot Options” on page 9-24

“Population Options” on page 9-27

“Fitness Scaling Options” on page 9-29

“Selection Options” on page 9-31

“Reproduction Options” on page 9-33

“Mutation Options” on page 9-33

“Crossover Options” on page 9-36

“Migration Options” on page 9-39

“Algorithm Settings” on page 9-40

“Multiobjective Options” on page 9-40

“Hybrid Function Options” on page 9-40

“Stopping Criteria Options” on page 9-41

“Output Function Options” on page 9-42

“Display to Command Window Options” on page 9-43

“Vectorize Option” on page 9-44

“Parallel Option” on page 9-45

Optimization Tool vs. Command Line
There are two ways to specify options for the genetic algorithm, depending on
whether you are using the Optimization Tool or calling the functions ga or
at the command line:

• If you are using the Optimization Tool (optimtool), select an option from a
drop-down list or enter the value of the option in a text field.

• If you are calling ga or gamultiobj from the command line, create an
options structure using the function gaoptimset, as follows:
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options = gaoptimset('Param1', value1, 'Param2', value2, ...);

See “Setting Options for ga at the Command Line” on page 6-13 for
examples.

In this section, each option is listed in two ways:

• By its label, as it appears in the Optimization Tool

• By its field name in the options structure

For example:

• Population type is the label of the option in the Optimization Tool.

• PopulationType is the corresponding field of the options structure.

Plot Options
Plot options enable you to plot data from the genetic algorithm while it is
running. When you select plot functions and run the genetic algorithm, a plot
window displays the plots on separate axes. Click on any subplot to view
a larger version of the plot in a separate figure window. You can stop the
algorithm at any time by clicking the Stop button on the plot window.

Plot interval (PlotInterval) specifies the number of generations between
consecutive calls to the plot function.

You can select any of the following plot functions in the Plot functions pane:

• Best fitness (@gaplotbestf) plots the best function value versus
generation.

• Expectation (@gaplotexpectation) plots the expected number of children
versus the raw scores at each generation.

• Score diversity (@gaplotscorediversity) plots a histogram of the scores
at each generation.

• Stopping (@plotstopping) plots stopping criteria levels.

• Best individual (@gaplotbestindiv) plots the vector entries of the
individual with the best fitness function value in each generation.
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• Genealogy (@gaplotgenealogy) plots the genealogy of individuals. Lines
from one generation to the next are color-coded as follows:

- Red lines indicate mutation children.

- Blue lines indicate crossover children.

- Black lines indicate elite individuals.

• Scores (@gaplotscores) plots the scores of the individuals at each
generation.

• Max constraint (@gaplotmaxconstr) plots the maximum nonlinear
constraint violation at each generation.

• Distance (@gaplotdistance) plots the average distance between
individuals at each generation.

• Range (@gaplotrange) plots the minimum, maximum, and mean fitness
function values in each generation.

• Selection (@gaplotselection) plots a histogram of the parents.

• Custom function enables you to use plot functions of your own. To specify
the plot function if you are using the Optimization Tool,

- Select Custom function.

- Enter @myfun in the text box, where myfun is the name of your function.

See “Structure of the Plot Functions” on page 9-26.

To display a plot when calling ga from the command line, set the PlotFcns
field of options to be a function handle to the plot function. For example, to
display the best fitness plot, set options as follows

options = gaoptimset('PlotFcns', @gaplotbestf);

To display multiple plots, use the syntax

options =gaoptimset('PlotFcns', {@plotfun1, @plotfun2, ...});

where @plotfun1, @plotfun2, and so on are function handles to the plot
functions.
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Structure of the Plot Functions
The first line of a plot function has the form

function state = plotfun(options, state, flag)

The input arguments to the function are

• options — Structure containing all the current options settings.

• state — Structure containing information about the current generation.
“The State Structure” on page 9-26 describes the fields of state.

• flag — String that tells what stage the algorithm is currently in.

“Passing Extra Parameters” in the Optimization Toolbox™ User’s Guide
explains how to provide additional parameters to the function.

The State Structure
The state structure, which is an input argument to plot, mutation, and output
functions, contains the following fields:

• Population — Population in the current generation

• Score — Scores of the current population

• Generation — Current generation number

• StartTime — Time when genetic algorithm started

• StopFlag — String containing the reason for stopping

• Selection — Indices of individuals selected for elite, crossover and
mutation

• Expectation — Expectation for selection of individuals

• Best — Vector containing the best score in each generation

• LastImprovement — Generation at which the last improvement in fitness
value occurred

• LastImprovementTime — Time at which last improvement occurred

• NonlinIneq — Nonlinear inequality constraints, displayed only when a
nonlinear constraint function is specified
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• NonlinEq — Nonlinear equality constraints, displayed only when a
nonlinear constraint function is specified

Population Options
Population options enable you to specify the parameters of the population that
the genetic algorithm uses.

Population type (PopulationType) specifies the data type of the input to
the fitness function. You can set Population type to be one of the following:

• Double Vector ('doubleVector') — Use this option if the individuals in
the population have type double. This is the default.

• Bit string ('bitstring') — Use this option if the individuals in the
population are bit strings.

• Custom ('custom') — Use this option to create a population whose data
type is neither of the preceding.

If you use a custom population type, you must write your own creation,
mutation, and crossover functions that accept inputs of that population
type, and specify these functions in the following fields, respectively:

- Creation function (CreationFcn)

- Mutation function (MutationFcn)

- Crossover function (CrossoverFcn)

Population size (PopulationSize) specifies how many individuals there
are in each generation. With a large population size, the genetic algorithm
searches the solution space more thoroughly, thereby reducing the chance
that the algorithm will return a local minimum that is not a global minimum.
However, a large population size also causes the algorithm to run more slowly.

If you set Population size to a vector, the genetic algorithm creates multiple
subpopulations, the number of which is the length of the vector. The size of
each subpopulation is the corresponding entry of the vector.

Creation function (CreationFcn) specifies the function that creates the
initial population for ga. You can choose from the following functions:
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• Uniform (@gacreationuniform) creates a random initial population with
a uniform distribution. This is the default if there are no constraints or
bound constraints.

• Feasible population (@gacreationlinearfeasible) creates a random
initial population that satisfies all bounds and linear constraints. It is
biased to create individuals that are on the boundaries of the constraints,
and to create well-dispersed populations. This is the default if there are
linear constraints.

• Custom enables you to write your own creation function, which must
generate data of the type that you specify in Population type. To specify
the creation function if you are using the Optimization Tool,

- Set Creation function to Custom.

- Set Function name to @myfun, where myfun is the name of your
function.

If you are using ga, set

options = gaoptimset('CreationFcn', @myfun);

Your creation function must have the following calling syntax.

function Population = myfun(GenomeLength, FitnessFcn, options)

The input arguments to the function are

- Genomelength — Number of independent variables for the fitness
function

- FitnessFcn — Fitness function

- options — Options structure

The function returns Population, the initial population for the genetic
algorithm.

“Passing Extra Parameters” in the Optimization Toolbox User’s Guide
explains how to provide additional parameters to the function.

Initial population (InitialPopulation) specifies an initial population for
the genetic algorithm. The default value is [], in which case ga uses the
default Creation function to create an initial population. If you enter a
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nonempty array in the Initial population field, the array must have no more
than Population size rows, and exactly Number of variables columns. In
this case, the genetic algorithm calls a Creation function to generate the
remaining individuals, if required.

Initial scores (InitialScores) specifies initial scores for the initial
population. The initial scores can also be partial.

Initial range (PopInitRange) specifies the range of the vectors in the initial
population that is generated by a creation function. You can set Initial
range to be a matrix with two rows and Number of variables columns,
each column of which has the form [lb; ub], where lb is the lower bound
and ub is the upper bound for the entries in that coordinate. If you specify
Initial range to be a 2-by-1 vector, each entry is expanded to a constant
row of length Number of variables.

See “Example — Setting the Initial Range” on page 6-23 for an example.

Fitness Scaling Options
Fitness scaling converts the raw fitness scores that are returned by the fitness
function to values in a range that is suitable for the selection function. You
can specify options for fitness scaling in the Fitness scaling pane.

Scaling function (FitnessScalingFcn) specifies the function that performs
the scaling. The options are

• Rank (@fitscalingrank) — The default fitness scaling function, Rank,
scales the raw scores based on the rank of each individual instead of its
score. The rank of an individual is its position in the sorted scores. The
rank of the most fit individual is 1, the next most fit is 2, and so on. Rank
fitness scaling removes the effect of the spread of the raw scores.

• Proportional (@fitscalingprop) — Proportional scaling makes the scaled
value of an individual proportional to its raw fitness score.

• Top (@fitscalingtop) — Top scaling scales the top individuals equally.
Selecting Top displays an additional field, Quantity, which specifies the
number of individuals that are assigned positive scaled values. Quantity
can be an integer between 1 and the population size or a fraction between 0
and 1 specifying a fraction of the population size. The default value is 0.4.
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Each of the individuals that produce offspring is assigned an equal scaled
value, while the rest are assigned the value 0. The scaled values have the
form [0 1/n 1/n 0 0 1/n 0 0 1/n ...].

To change the default value for Quantity at the command line, use the
following syntax

options = gaoptimset('FitnessScalingFcn', {@fitscalingtop,
quantity})

where quantity is the value of Quantity.

• Shift linear (@fitscalingshiftlinear) — Shift linear scaling scales
the raw scores so that the expectation of the fittest individual is equal to
a constant multiplied by the average score. You specify the constant in
the Max survival rate field, which is displayed when you select Shift
linear. The default value is 2.

To change the default value of Max survival rate at the command line,
use the following syntax

options = gaoptimset('FitnessScalingFcn',
{@fitscalingshiftlinear, rate})

where rate is the value of Max survival rate.

• Custom enables you to write your own scaling function. To specify the
scaling function using the Optimization Tool,

- Set Scaling function to Custom.

- Set Function name to @myfun, where myfun is the name of your
function.

If you are using ga at the command line, set

options = gaoptimset('FitnessScalingFcn', @myfun);

Your scaling function must have the following calling syntax:

function expection = myfun(scores, nParents)

The input arguments to the function are

- scores — A vector of scalars, one for each member of the population
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- nParents — The number of parents needed from this population

The function returns expectation, a row vector of scalars of the same
length as scores, giving the scaled values of each member of the
population. The sum of the entries of expectation must equal nParents.

“Passing Extra Parameters” in the Optimization Toolbox User’s Guide
explains how to provide additional parameters to the function.

See “Fitness Scaling” on page 6-31 for more information.

Selection Options
Selection options specify how the genetic algorithm chooses parents for the
next generation. You can specify the function the algorithm uses in the
Selection function (SelectionFcn) field in the Selection options pane.
The options are

• Stochastic uniform (@selectionstochunif) — The default selection
function, Stochastic uniform, lays out a line in which each parent
corresponds to a section of the line of length proportional to its scaled value.
The algorithm moves along the line in steps of equal size. At each step, the
algorithm allocates a parent from the section it lands on. The first step is a
uniform random number less than the step size.

• Remainder (@selectionremainder) — Remainder selection assigns
parents deterministically from the integer part of each individual’s scaled
value and then uses roulette selection on the remaining fractional part. For
example, if the scaled value of an individual is 2.3, that individual is listed
twice as a parent because the integer part is 2. After parents have been
assigned according to the integer parts of the scaled values, the rest of the
parents are chosen stochastically. The probability that a parent is chosen
in this step is proportional to the fractional part of its scaled value.

• Uniform (@selectionuniform) — Uniform selection chooses parents using
the expectations and number of parents. Uniform selection is useful for
debugging and testing, but is not a very effective search strategy.

• Roulette (@selectionroulette) — Roulette selection chooses parents
by simulating a roulette wheel, in which the area of the section of the
wheel corresponding to an individual is proportional to the individual’s
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expectation. The algorithm uses a random number to select one of the
sections with a probability equal to its area.

• Tournament (@selectiontournament) — Tournament selection chooses
each parent by choosing Tournament size players at random and then
choosing the best individual out of that set to be a parent. Tournament
size must be at least 2. The default value of Tournament size is 4.

To change the default value of Tournament size at the command line,
use the syntax

options = gaoptimset('SelectionFcn',...
{@selecttournament,size})

where size is the value of Tournament size.

• Custom enables you to write your own selection function. To specify the
selection function using the Optimization Tool,

- Set Selection function to Custom.

- Set Function name to @myfun, where myfun is the name of your
function.

If you are using ga at the command line, set

options = gaoptimset('SelectionFcn', @myfun);

Your selection function must have the following calling syntax:

function parents = myfun(expectation, nParents, options)

The input arguments to the function are

- expectation — Expected number of children for each member of the
population

- nParents — Number of parents to select

- options — Genetic algorithm options structure

The function returns parents, a row vector of length nParents containing
the indices of the parents that you select.

“Passing Extra Parameters” in the Optimization Toolbox User’s Guide
explains how to provide additional parameters to the function.
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See “Selection” on page 6-34 for more information.

Reproduction Options
Reproduction options specify how the genetic algorithm creates children for
the next generation.

Elite count (EliteCount) specifies the number of individuals that are
guaranteed to survive to the next generation. Set Elite count to be a positive
integer less than or equal to the population size. The default value is 2.

Crossover fraction (CrossoverFraction) specifies the fraction of the next
generation, other than elite children, that are produced by crossover. Set
Crossover fraction to be a fraction between 0 and 1, either by entering the
fraction in the text box or moving the slider. The default value is 0.8.

See “Setting the Crossover Fraction” on page 6-38 for an example.

Mutation Options
Mutation options specify how the genetic algorithm makes small random
changes in the individuals in the population to create mutation children.
Mutation provides genetic diversity and enable the genetic algorithm
to search a broader space. You can specify the mutation function in the
Mutation function (MutationFcn) field in the Mutation options pane. You
can choose from the following functions:

• Gaussian (mutationgaussian) — The default mutation function, Gaussian,
adds a random number taken from a Gaussian distribution with mean
0 to each entry of the parent vector. The standard deviation of this
distribution is determined by the parameters Scale and Shrink, which
are displayed when you select Gaussian, and by the Initial range setting
in the Population options.

- The Scale parameter determines the standard deviation at the first
generation. If you set Initial range to be a 2-by-1 vector v, the initial
standard deviation is the same at all coordinates of the parent vector,
and is given by Scale*(v(2) - v(1)).
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If you set Initial range to be a vector v with two rows and Number of
variables columns, the initial standard deviation at coordinate i of the
parent vector is given by Scale*(v(i,2) - v(i,1)).

- The Shrink parameter controls how the standard deviation shrinks
as generations go by. If you set Initial range to be a 2-by-1 vector,
the standard deviation at the kth generation, σk, is the same at all
coordinates of the parent vector, and is given by the recursive formula

σ σk k
k= −⎛

⎝⎜
⎞
⎠⎟−1 1 Shrink

Generations
.

If you set Initial range to be a vector with two rows and Number of
variables columns, the standard deviation at coordinate i of the parent
vector at the kth generation, σi,k, is given by the recursive formula

σ σi k i k
k

, , .= −⎛
⎝⎜

⎞
⎠⎟−1 1 Shrink

Generations

If you set Shrink to 1, the algorithm shrinks the standard deviation
in each coordinate linearly until it reaches 0 at the last generation is
reached. A negative value of Shrink causes the standard deviation to
grow.

The default value of both Scale and Shrink is 1. To change the default
values at the command line, use the syntax

options = gaoptimset('MutationFcn', ...
{@mutationgaussian, scale, shrink})

where scale and shrink are the values of Scale and Shrink, respectively.

• Uniform (mutationuniform) — Uniform mutation is a two-step process.
First, the algorithm selects a fraction of the vector entries of an individual
for mutation, where each entry has a probability Rate of being mutated.
The default value of Rate is 0.01. In the second step, the algorithm
replaces each selected entry by a random number selected uniformly from
the range for that entry.

To change the default value of Rate at the command line, use the syntax

options = gaoptimset('MutationFcn', {@mutationuniform, rate})

9-34



Genetic Algorithm Options

where rate is the value of Rate.

• Adaptive Feasible (mutationadaptfeasible) randomly generates
directions that are adaptive with respect to the last successful or
unsuccessful generation. The feasible region is bounded by the constraints
and inequality constraints. A step length is chosen along each direction so
that linear constraints and bounds are satisfied.

• Custom enables you to write your own mutation function. To specify the
mutation function using the Optimization Tool,

- Set Mutation function to Custom.

- Set Function name to @myfun, where myfun is the name of your
function.

If you are using ga, set

options = gaoptimset('MutationFcn', @myfun);

Your mutation function must have this calling syntax:

function mutationChildren = myfun(parents, options, nvars,
FitnessFcn, state, thisScore, thisPopulation)

The arguments to the function are

- parents — Row vector of parents chosen by the selection function

- options — Options structure

- nvars — Number of variables

- FitnessFcn — Fitness function

- state — Structure containing information about the current generation.
“The State Structure” on page 9-26 describes the fields of state.

- thisScore — Vector of scores of the current population

- thisPopulation — Matrix of individuals in the current population

The function returns mutationChildren—the mutated offspring—as a
matrix whose rows correspond to the children. The number of columns of
the matrix is Number of variables.
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“Passing Extra Parameters” in the Optimization Toolbox User’s Guide
explains how to provide additional parameters to the function.

Crossover Options
Crossover options specify how the genetic algorithm combines two individuals,
or parents, to form a crossover child for the next generation.

Crossover function (CrossoverFcn) specifies the function that performs the
crossover. You can choose from the following functions:

• Scattered (@crossoverscattered), the default crossover function, creates
a random binary vector and selects the genes where the vector is a 1 from
the first parent, and the genes where the vector is a 0 from the second
parent, and combines the genes to form the child. For example, if p1 and p2
are the parents

p1 = [a b c d e f g h]
p2 = [1 2 3 4 5 6 7 8]

and the binary vector is [1 1 0 0 1 0 0 0], the function returns the following
child:

child1 = [a b 3 4 e 6 7 8]

• Single point (@crossoversinglepoint) chooses a random integer n
between 1 and Number of variables and then

- Selects vector entries numbered less than or equal to n from the first
parent.

- Selects vector entries numbered greater than n from the second parent.

- Concatenates these entries to form a child vector.

For example, if p1 and p2 are the parents

p1 = [a b c d e f g h]
p2 = [1 2 3 4 5 6 7 8]

and the crossover point is 3, the function returns the following child.

child = [a b c 4 5 6 7 8]
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• Two point (@crossovertwopoint) selects two random integers m and n
between 1 and Number of variables. The function selects

- Vector entries numbered less than or equal to m from the first parent

- Vector entries numbered from m+1 to n, inclusive, from the second parent

- Vector entries numbered greater than n from the first parent.

The algorithm then concatenates these genes to form a single gene. For
example, if p1 and p2 are the parents

p1 = [a b c d e f g h]
p2 = [1 2 3 4 5 6 7 8]

and the crossover points are 3 and 6, the function returns the following
child.

child = [a b c 4 5 6 g h]

• Intermediate (@crossoverintermediate) creates children by taking a
weighted average of the parents. You can specify the weights by a single
parameter, Ratio, which can be a scalar or a row vector of length Number
of variables. The default is a vector of all 1’s. The function creates the
child from parent1 and parent2 using the following formula.

child = parent1 + rand * Ratio * ( parent2 - parent1)

If all the entries of Ratio lie in the range [0, 1], the children produced are
within the hypercube defined by placing the parents at opposite vertices. If
Ratio is not in that range, the children might lie outside the hypercube. If
Ratio is a scalar, then all the children lie on the line between the parents.

To change the default value of Ratio at the command line, use the syntax

options = gaoptimset('CrossoverFcn', ...
{@crossoverintermediate, ratio});

where ratio is the value of Ratio.

• Heuristic (@crossoverheuristic) returns a child that lies on the line
containing the two parents, a small distance away from the parent with the
better fitness value in the direction away from the parent with the worse
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fitness value. You can specify how far the child is from the better parent
by the parameter Ratio, which appears when you select Heuristic. The
default value of Ratio is 1.2. If parent1 and parent2 are the parents, and
parent1 has the better fitness value, the function returns the child

child = parent2 + R * (parent1 - parent2);

To change the default value of Ratio at the command line, use the syntax

options=gaoptimset('CrossoverFcn',...
{@crossoverheuristic,ratio});

where ratio is the value of Ratio.

• Arithmetic (@crossoverarithmetic) creates children that are the
weighted arithmetic mean of two parents. Children are always feasible
with respect to linear constraints and bounds.

• Custom enables you to write your own crossover function. To specify the
crossover function using the Optimization Tool,

- Set Crossover function to Custom.

- Set Function name to @myfun, where myfun is the name of your
function.

If you are using ga, set

options = gaoptimset('CrossoverFcn',@myfun);

Your selection function must have the following calling syntax.

xoverKids = myfun(parents, options, nvars, FitnessFcn,
unused,thisPopulation)

The arguments to the function are

- parents — Row vector of parents chosen by the selection function

- options — options structure

- nvars — Number of variables

- FitnessFcn — Fitness function

- unused — Placeholder not used
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- thisPopulation — Matrix representing the current population. The
number of rows of the matrix is Population size and the number of
columns is Number of variables.

The function returns xoverKids—the crossover offspring—as a matrix
whose rows correspond to the children. The number of columns of the
matrix is Number of variables.

“Passing Extra Parameters” in the Optimization Toolbox User’s Guide
explains how to provide additional parameters to the function.

Migration Options
Migration options specify how individuals move between subpopulations.
Migration occurs if you set Population size to be a vector of length greater
than 1. When migration occurs, the best individuals from one subpopulation
replace the worst individuals in another subpopulation. Individuals that
migrate from one subpopulation to another are copied. They are not removed
from the source subpopulation.

You can control how migration occurs by the following three fields in the
Migration options pane:

• Direction (MigrationDirection) — Migration can take place in one or
both directions.

- If you set Direction to Forward ('forward'), migration takes place
toward the last subpopulation. That is, the nth subpopulation migrates
into the (n+1)th subpopulation.

- If you set Direction to Both ('both'), the nth subpopulation migrates
into both the (n–1)th and the (n+1)th subpopulation.

Migration wraps at the ends of the subpopulations. That is, the last
subpopulation migrates into the first, and the first may migrate into the
last.

• Interval (MigrationInterval) — Specifies how many generation pass
between migrations. For example, if you set Interval to 20, migration
takes place every 20 generations.

• Fraction (MigrationFraction) — Specifies how many individuals move
between subpopulations. Fraction specifies the fraction of the smaller of
the two subpopulations that moves. For example, if individuals migrate
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from a subpopulation of 50 individuals into a subpopulation of 100
individuals and you set Fraction to 0.1, the number of individuals that
migrate is 0.1 * 50 = 5.

Algorithm Settings
Algorithm settings define algorithmic specific parameters.

Parameters that can be specified for a nonlinear constraint algorithm include

• Initial penalty (InitialPenalty) — Specifies an initial value of the
penalty parameter that is used by the algorithm. Initial penalty must be
greater than or equal to 1.

• Penalty factor (PenaltyFactor) — Increases the penalty parameter when
the problem is not solved to required accuracy and constraints are not
satisfied. Penalty factor must be greater than 1.

Multiobjective Options
Multiobjective options define parameters characteristic of the multiobjective
genetic algorithm. You can specify the following parameters:

• DistanceMeasureFcn — Defines a handle to the function that computes
distance measure of individuals, computed in decision variable or design
space (genotype) or in function space (phenotype). For example, the default
distance measure function is distancecrowding in function space, or
{@distancecrowding,'phenotype'}.

• ParetoFraction — Sets the fraction of individuals to keep on the first
Pareto front while the solver selects individuals from higher fronts. This
option is a scalar between 0 and 1.

Hybrid Function Options
A hybrid function is another minimization function that runs after the genetic
algorithm terminates. You can specify a hybrid function in Hybrid function
(HybridFcn) options. The choices are

• [] — No hybrid function.

• fminsearch (@fminsearch) — Uses the MATLAB® function fminsearch to
perform unconstrained minimization.
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• patternsearch (@patternsearch) — Uses a pattern search to perform
constrained or unconstrained minimization.

• fminunc (@fminunc) — Uses the Optimization Toolbox function fminunc to
perform unconstrained minimization.

• fmincon (@fmincon) — Uses the Optimization Toolbox function fmincon to
perform constrained minimization.

You can set a separate options structure for the hybrid function. Use
psoptimset or optimset to create the structure, depending on whether the
hybrid function is patternsearch or not:

hybridopts = optimset('display','iter','LargeScale','off');

Include the hybrid options in the Genetic Algorithm options structure as
follows:

options = gaoptimset(options,'HybridFcn',{@fminunc,hybridopts});

hybridopts must exist before you set options.

See “Using a Hybrid Function” on page 6-49 for an example.

Stopping Criteria Options
Stopping criteria determine what causes the algorithm to terminate. You can
specify the following options:

• Generations (Generations) — Specifies the maximum number of
iterations for the genetic algorithm to perform. The default is 100.

• Time limit (TimeLimit) — Specifies the maximum time in seconds the
genetic algorithm runs before stopping.

• Fitness limit (FitnessLimit) — The algorithm stops if the best fitness
value is less than or equal to the value of Fitness limit.

• Stall generations (StallGenLimit) — The algorithm stops if the weighted
average change in the fitness function value over Stall generations is less
than Function tolerance.
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• Stall time limit (StallTimeLimit) — The algorithm stops if there is no
improvement in the best fitness value for an interval of time in seconds
specified by Stall time.

• Function tolerance (TolFun) — The algorithm runs until the cumulative
change in the fitness function value over Stall generations is less than
or equal to Function Tolerance.

• Nonlinear constraint tolerance (TolCon) — The Nonlinear constraint
tolerance is not used as stopping criterion. It is used to determine the
feasibility with respect to nonlinear constraints.

See “Setting the Maximum Number of Generations” on page 6-53 for an
example.

Output Function Options
Output functions are functions that the genetic algorithm calls at each
generation. The following options are available:

History to new window (@gaoutputgen) displays the history of points
computed by the algorithm in a new window at each multiple of Interval
iterations.

Custom enables you to write your own output function. To specify the output
function using the Optimization Tool,

• Select Custom function.

• Enter @myfun in the text box, where myfun is the name of your function.

If you are using ga, set

options = gaoptimset('OutputFcn',@myfun);

To see a template that you can use to write your own output functions, enter

edit gaoutputfcntemplate

at the MATLAB command line.
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Structure of the Output Function
The output function has the following calling syntax.

[state,options,optchanged] = myfun(options,state,flag,interval)

The function has the following input arguments:

• options — Options structure

• state — Structure containing information about the current generation.
“The State Structure” on page 9-26 describes the fields of state.

• flag — String indicating the current status of the algorithm as follows:

- 'init' — Initial stage

- 'iter' — Algorithm running

- 'interrupt' — Intermediate stage

- 'done' — Algorithm terminated

• interval — Optional interval argument

“Passing Extra Parameters” in the Optimization Toolbox User’s Guide explains
how to provide additional parameters to the function.

The output function returns the following arguments to ga:

• state — Structure containing information about the current generation

• options — Options structure modified by the output function. This
argument is optional.

• optchanged — Flag indicating changes to options

Display to Command Window Options
Level of display ('Display') specifies how much information is displayed
at the command line while the genetic algorithm is running. The available
options are

• Off ('off') — No output is displayed.

• Iterative ('iter') — Information is displayed at each iteration.
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• Diagnose ('diagnose') — Information is displayed at each iteration. In
addition, the diagnostic lists some problem information and the options
that have been changed from the defaults.

• Final ('final') — The reason for stopping is displayed.

Both Iterative and Diagnose display the following information:

• Generation — Generation number

• f-count — Cumulative number of fitness function evaluations

• Best f(x) — Best fitness function value

• Mean f(x) — Mean fitness function value

• Stall generations — Number of generations since the last improvement
of the fitness function

When a nonlinear constraint function has been specified, Iterative and
Diagnose will not display the Mean f(x), but will additionally display:

• Max Constraint — Maximum nonlinear constraint violation

The default value of Level of display is

• Off in the Optimization Tool

• 'final' in an options structure created using gaoptimset

Vectorize Option
The vectorize option specifies whether the computation of the fitness function
is vectorized. Set Set Objective function is vectorized to On to indicate
that the fitness function is vectorized. When Objective function is
vectorized is Off, the algorithm calls the fitness function on one individual
at a time as it loops through the population.

See “Vectorizing the Fitness Function” on page 6-54 for an example.

9-44



Genetic Algorithm Options

Parallel Option
Specifies whether ga or gamultiobj evaluates populations in parallel, using
multiple processes or processors, or evaluates them serially. Set UseParallel
to 'always' to evaluate in parallel. Set UseParallel to 'never' to evaluate
serially.
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Simulated Annealing and Threshold Acceptance Algorithm
Options

In this section...

“saoptimset At The Command Line” on page 9-46

“Plot Options” on page 9-46

“Temperature Options” on page 9-48

“Algorithm Settings” on page 9-49

“Hybrid Function Options” on page 9-50

“Stopping Criteria Options” on page 9-51

“Output Function Options” on page 9-51

“Display Options” on page 9-53

saoptimset At The Command Line
You specify options by creating an options structure using the function
saoptimset, as follows:

options = saoptimset('Param1',value1,'Param2',value2, ...);

See “Setting Options for simulannealbnd and threshacceptbnd at the
Command Line” on page 7-3 for examples.

Each option in this section is listed by its field name in the options structure.
For example, InitialTemperature refers to the corresponding field of the
options structure.

Plot Options
Plot options enable you to plot data from the simulated annealing or threshold
acceptance solver while it is running. When you specify plot functions and run
the algorithm, a plot window displays the plots on separate axes. Right-click
on any subplot to view a larger version of the plot in a separate figure window.
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PlotInterval specifies the number of iterations between consecutive calls to
the plot function.

To display a plot when calling simulannealbnd or threshacceptbnd from the
command line, set the PlotFcns field of options to be a function handle to
the plot function. You can specify any of the following plots:

• @saplotbestf plots the best objective function value.

• @saplotbestx plots the current best point.

• @saplotf plots the current function value.

• @saplotx plots the current point.

• @saplotstopping plots stopping criteria levels.

• @saplottemperature plots the temperature at each iteration.

• @myfun plots a custom plot function, where myfun is the name of your
function. See “Structure of the Plot Functions” on page 9-4 for a description
of the syntax.

For example, to display the best objective plot, set options as follows

options = saoptimset('PlotFcns',@saplotbestf);

To display multiple plots, use the cell array syntax

options = saoptimset('PlotFcns',{@plotfun1,@plotfun2, ...});

where @plotfun1, @plotfun2, and so on are function handles to the plot
functions.

Structure of the Plot Functions
The first line of a plot function has the form

function stop = plotfun(options,optimvalues,flag)

The input arguments to the function are

• options — Options structure created using saoptimset.
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• optimvalues — Structure containing information about the current state
of the solver. The structure contains the following fields:

- x — Current point

- fval — Objective function value at x

- bestx — Best point found so far

- bestfval — Objective function value at best point

- temperature — Current temperature

- iteration — Current iteration

- funccount — Number of function evaluations

- t0 — Start time for algorithm

- k — Annealing parameter

- tau — Threshold acceptance sequence (for threshold acceptance solver
only)

• flag — Current state in which the plot function is called. The possible
values for flag are

- 'init' — Initialization state

- 'iter' — Iteration state

- 'done' — Final state

The output argument stop provides a way to stop the algorithm at the current
iteration. stop can have the following values:

• false — The algorithm continues to the next iteration.

• true — The algorithm terminates at the current iteration.

Temperature Options
Temperature options specify how the temperature will be lowered at each
iteration over the course of the algorithm.

• InitialTemperature — Initial temperature at the start of the algorithm.
The default is 100.
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• TemperatureFcn — Function used to update the temperature schedule. Let
i denote the iteration number. The options are:

- @temperatureexp — The temperature is equal to InitialTemperature *
0.95^i. This is the default.

- @temperaturefast — The temperature is equal to InitialTemperature / i.

- @temperatureboltz — The temperature is equal to InitialTemperature /
ln(i).

- @myfun — Uses a custom function, myfun, to update temperature. See
the functions above for syntax.

• ReannealInterval — Number of points accepted before reannealing. The
default value is 100.

Algorithm Settings
Algorithm settings define algorithmic specific parameters used in generating
new points at each iteration.

Parameters that can be specified for the simulated annealing and threshold
acceptance algorithms are:

• AnnealingFcn — Function used to generate new points for the next
iteration. The choices are:

- @annealingfast — The step has length temperature, with direction
uniformly at random. This is the default.

- @annealingboltz — The step has length square root of temperature,
with direction uniformly at random.

- @myfun — Uses a custom annealing algorithm, myfun. The syntax is:

newx = myfun(optimValues,problem)

where optimValues is a structure described in “Structure of the Output
Function” on page 9-52.

AcceptanceFcn — Function used to determine whether a new point
is accepted or not. The default function varies depending on which
solver/algorithm you are using. The choices are:
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• @acceptancesa — Simulated annealing acceptance function. The default
for simulannealbnd. This function cannot be used with threshacceptbnd.

• @acceptancethresh — Threshold acceptance function. The default for
threshacceptbnd. This function cannot be used with simulannealbnd.

• @myfun — A custom acceptance function, myfun. The syntax is:

newpoint = myfun(optimValues,newx,newfval);

where optimValues is a structure described in “Structure of the Output
Function” on page 9-52, newx is the point being evaluated for acceptance,
and newfval is the objective function at newx.

Hybrid Function Options
A hybrid function is another minimization function that runs during or at the
end of iterations of the solver. HybridInterval specifies the interval (if not
never or end) at which the hybrid function is called. You can specify a hybrid
function using the HybridFcn option. The choices are:

• [] — No hybrid function.

• @fminsearch — Uses the MATLAB® function fminsearch to perform
unconstrained minimization.

• @patternsearch — Uses patternsearch to perform constrained or
unconstrained minimization.

• @fminunc — Uses the Optimization Toolbox™ function fminunc to perform
unconstrained minimization.

• @fmincon — Uses the Optimization Toolbox function fmincon to perform
constrained minimization.

You can set a separate options structure for the hybrid function. Use
psoptimset or optimset to create the structure, depending on whether the
hybrid function is patternsearch or not:

hybridopts = optimset('display','iter','LargeScale','off');

Include the hybrid options in the Simulated Annealing or Threshold
Acceptance Algorithm options structure as follows:
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options = saoptimset(options,'HybridFcn',{@fminunc,hybridopts});

hybridopts must exist before you set options.

See “Using a Hybrid Function” on page 6-49 for an example.

Stopping Criteria Options
Stopping criteria determine what causes the algorithm to terminate. You can
specify the following options:

• TolFun — The algorithm runs until the average change in value of the
objective function in StallIterLim iterations is less than TolFun. The
default value is 1e-6.

• MaxIter — The algorithm stops if the number of iterations exceeds this
maximum number of iterations. You can specify the maximum number of
iterations as a positive integer or Inf. Inf is the default.

• MaxFunEval specifies the maximum number of evaluations of the objective
function. The algorithm stops if the number of function evaluations exceeds
the maximum number of function evaluations. The allowed maximum is
3000*numberofvariables.

• TimeLimit specifies the maximum time in seconds the algorithm runs
before stopping.

• ObjectiveLimit — The algorithm stops if the best objective function value
is less than or equal to the value of ObjectiveLimit.

Output Function Options
Output functions are functions that the algorithm calls at each iteration.
The default value is to have no output function, []. You must first create
an output function using the syntax described in “Structure of the Output
Function” on page 9-52. Then, specify your function as @myfun, where myfun
is the name of your function.

If you are using simulanneal, set

options = saoptimset('OutputFcns',@myfun);

To see a template that you can use to write your own output functions, enter
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edit saoutputfcntemplate

at the MATLAB command line.

Structure of the Output Function
The output function has the following calling syntax.

[stop,options,optchanged] = myfun(options,optimvalues,flag)

The function has the following input arguments:

• options — Options structure created using saoptimset.

• optimvalues — Structure containing information about the current state
of the solver. The structure contains the following fields:

- x — Current point

- fval — Objective function value at x

- bestx — Best point found so far

- bestfval — Objective function value at best point

- temperature — Current temperature

- iteration — Current iteration

- funccount — Number of function evaluations

- t0 — Start time for algorithm

- k — Annealing parameter

- tau — Threshold acceptance sequence (for threshold acceptance solver
only)

• flag — Current state in which the output function is called. The possible
values for flag are

- 'init' — Initialization state

- 'iter' — Iteration state

- 'done' — Final state

The output function returns the following arguments:
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• stop — Provides a way to stop the algorithm at the current iteration. stop
can have the following values:

- false — The algorithm continues to the next iteration.

- true — The algorithm terminates at the current iteration.

• options — Options structure modified by the output function.

• optchanged — A boolean flag indicating changes were made to options.
This must be set to true if options are changed.

Display Options
Use the Display option to specify how much information is displayed at the
command line while the algorithm is running. The available options are

• off — No output is displayed. This is the default value for an options
structure created using saoptimset.

• iter — Information is displayed at each iteration.

• diagnose — Information is displayed at each iteration. In addition, the
diagnostic lists some problem information and the options that have been
changed from the defaults.

• final — The reason for stopping is displayed. This is the default.

Both iter and diagnose display the following information:

• Iteration — Iteration number

• f-count — Cumulative number of objective function evaluations

• Best f(x) — Best objective function value

• Current f(x) — Current objective function value

• Mean Temperature — Mean temperature function value
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Function Reference

Genetic Algorithm (p. 10-2) Use genetic algorithm and
Optimization Tool, and modify
genetic algorithm options

Direct Search (p. 10-2) Use direct search and Optimization
Tool, and modify pattern search
options

Simulated Annealing and Threshold
Acceptance Algorithms (p. 10-2)

Use simulated annealing and
threshold acceptance algorithms,
and modify algorithm options



10 Function Reference

Genetic Algorithm
ga Find minimum of function using

genetic algorithm

gamultiobj Find minima of multiple functions
using genetic algorithm

gaoptimget Obtain values of genetic algorithm
options structure

gaoptimset Create genetic algorithm options
structure

Direct Search
patternsearch Find minimum of function using

pattern search

psoptimget Obtain values of pattern search
options structure

psoptimset Create pattern search options
structure

Simulated Annealing and Threshold Acceptance
Algorithms

saoptimget Values of simulated annealing or
threshold acceptance algorithm
options structure

saoptimset Create simulated annealing
algorithm or threshold acceptance
options structure
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simulannealbnd Find unconstrained or
bound-constrained minimum of
function of several variables using
simulated annealing algorithm

threshacceptbnd Find unconstrained or
bound-constrained minimum of
function of several variables using
threshold acceptance algorithm
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ga

Purpose Find minimum of function using genetic algorithm

Syntax x = ga(fitnessfcn,nvars)
x = ga(fitnessfcn,nvars,A,b)
x = ga(fitnessfcn,nvars,A,b,Aeq,beq)
x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB)
x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon)
x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)
x = ga(problem)
[x,fval] = ga(...)
[x,fval,exitflag] = ga(...)

Description ga implements the genetic algorithm at the command line to minimize
an objective function.

x = ga(fitnessfcn,nvars) finds a local unconstrained minimum, x,
to the objective function, fitnessfcn. nvars is the dimension (number
of design variables) of fitnessfcn. The objective function, fitnessfcn,
accepts a vector x of size 1-by-nvars, and returns a scalar evaluated at x.

Note To write a function with additional parameters to the independent
variables that can be called by ga, see the section on “Passing Extra
Parameters” in the Optimization Toolbox™ User’s Guide.

x = ga(fitnessfcn,nvars,A,b) finds a local minimum x to
fitnessfcn, subject to the linear inequalities A x b∗ ≤ . fitnessfcn
accepts input x and returns a scalar function value evaluated at x.

If the problem has m linear inequality constraints and n variables, then

• A is a matrix of size m-by-n.

• b is a vector of length m.

Note that the linear constraints are not satisfied when the
PopulationType option is set to 'bitString' or 'custom'.
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x = ga(fitnessfcn,nvars,A,b,Aeq,beq) finds a local minimum x to

fitnessfcn, subject to the linear equalities Aeq x beq∗ = as well as
A x b∗ ≤ . (Set A=[] and b=[] if no inequalities exist.)

If the problem has r linear equality constraints and n variables, then

• Aeq is a matrix of size r-by-n.

• beq is a vector of length r.

Note that the linear constraints are not satisfied when the
PopulationType option is set to 'bitString' or 'custom'.

x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB) defines a set of lower
and upper bounds on the design variables, x, so that a solution is found
in the range LB x UB≤ ≤ . Use empty matrices for LB and UB if no
bounds exist. Set LB(i) = -Inf if x(i) is unbounded below; set UB(i) = Inf
if x(i) is unbounded above.

x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon) subjects
the minimization to the constraints defined in nonlcon. The function
nonlcon accepts x and returns the vectors C and Ceq, representing the
nonlinear inequalities and equalities respectively. ga minimizes the
fitnessfcn such that C(x)≤0 and Ceq(x)=0. (Set LB=[] and UB=[]
if no bounds exist.)

Note that the nonlinear constraints are not satisfied when the
PopulationType option is set to 'bitString' or 'custom'.

x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)
minimizes with the default optimization parameters replaced by values
in the structure options, which can be created using the gaoptimset
function. See the gaoptimset reference page for details.

x = ga(problem) finds the minimum for problem, where problem is a
structure containing the following fields:

fitnessfcn Fitness function

nvars Number of design variables
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Aineq A matrix for linear inequality constraints

Bineq b vector for linear inequality constraints

Aeq A matrix for linear equality constraints

Beq b vector for linear equality constraints

lb Lower bound on x

ub Upper bound on x

nonlcon Nonlinear constraint function

randstate Optional field to reset rand state

randnstate Optional field to reset randn state

solver 'ga'

options Options structure created using gaoptimset

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Importing and Exporting Your Work” in the
Optimization Toolbox User’s Guide.

[x,fval] = ga(...) returns fval, the value of the fitness function
at x.

[x,fval,exitflag] = ga(...) returns exitflag, an integer
identifying the reason the algorithm terminated. The following lists
the values of exitflag and the corresponding reasons the algorithm
terminated.

• 1 — Average cumulative change in value of the fitness function over
options.StallGenLimit generations less than options.TolFun and
constraint violation less than options.TolCon.

• 2 — Fitness limit reached and constraint violation less than
options.TolCon.

• 3 — The value of the fitness function did not change in
options.StallGenLimit generations and constraint violation less
than options.TolCon.
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• 4 — Magnitude of step smaller than machine precision and constraint
violation less than options.TolCon.

• 0 — Maximum number of generations exceeded.

• -1 — Optimization terminated by the output or plot function.

• -2 — No feasible point found.

• -4 — Stall time limit exceeded.

• -5 — Time limit exceeded.

[x,fval,exitflag,output] = ga(...) returns output, a structure
that contains output from each generation and other information about
the performance of the algorithm. The output structure contains the
following fields:

• randstate — The state of rand, the MATLAB® random number
generator, just before the algorithm started.

• randnstate — The state of randn the MATLAB normal random
number generator, just before the algorithm started. You can use the
values of randstate and randnstate to reproduce the output of ga.
See “Reproducing Your Results” on page 6-17.

• generations — The number of generations computed.

• funccount — The number of evaluations of the fitness function

• message — The reason the algorithm terminated.

• maxconstraint — Maximum constraint violation, if any.

[x,fval,exitflag,output,population] = ga(...) returns the
matrix, population, whose rows are the final population.

[x,fval,exitflag,output,population,scores] = ga(...) returns
scores the scores of the final population.
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Note For problems that use the population type Double Vector (the
default), ga does not accept functions whose inputs are of type complex.
To solve problems involving complex data, write your functions so that
they accept real vectors, by separating the real and imaginary parts.

Example Given the following inequality constraints and lower bounds
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the following code finds the minimum of the function, lincontest6,
that is provided your software:

A = [1 1; -1 2; 2 1];
b = [2; 2; 3];
lb = zeros(2,1);
[x,fval,exitflag] = ga(@lincontest6,...
2,A,b,[],[],lb)

Optimization terminated:
average change in the fitness value less than
options.TolFun.

x =
0.7794 1.2205

fval =
-8.03916

exitflag =
1
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References [1] Goldberg, David E., Genetic Algorithms in Search, Optimization &
Machine Learning, Addison-Wesley, 1989.

[2] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent
Augmented Lagrangian Algorithm for Optimization with General
Constraints and Simple Bounds”, SIAM Journal on Numerical Analysis,
Volume 28, Number 2, pages 545–572, 1991.

[3] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent
Augmented Lagrangian Barrier Algorithm for Optimization with
General Inequality Constraints and Simple Bounds”, Mathematics of
Computation, Volume 66, Number 217, pages 261–288, 1997.

See Also gaoptimget, gaoptimset, patternsearch, simulannealbnd,
threshacceptbnd

11-7



gamultiobj

Purpose Find minima of multiple functions using genetic algorithm

Syntax X = gamultiobj(FITNESSFCN,NVARS)
X = gamultiobj(FITNESSFCN,NVARS,A,b)
X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq)
X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB)
X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB,options)
X = gamultiobj(problem)
[X,FVAL] = gamultiobj(FITNESSFCN,NVARS, ...)
[X,FVAL,EXITFLAG] = gamultiobj(FITNESSFCN,NVARS, ...)
[X,FVAL,EXITFLAG,OUTPUT] = gamultiobj(FITNESSFCN,NVARS, ...)
[X,FVAL,EXITFLAG,OUTPUT,POPULATION] = gamultiobj(FITNESSFCN,

...)
[X,FVAL,EXITFLAG,OUTPUT,POPULATION,

SCORE] = gamultiobj(FITNESSFCN, ...)

Description gamultiobj implements the genetic algorithm at the command line to
minimize a multicomponent objective function.

X = gamultiobj(FITNESSFCN,NVARS) finds a local Pareto set X of the
objective functions defined in FITNESSFCN. NVARS is the dimension of
the optimization problem (number of decision variables). FITNESSFCN
accepts a vector X of size 1-by-NVARS and returns a vector of size
1-by-numberOfObjectives evaluated at a decision variable. X is a
matrix with NVARS columns. The number of rows in X is the same as the
number of Pareto solutions. All solutions in a Pareto set are equally
optimal; it is up to the designer to select a solution in the Pareto set
depending on the application.

X = gamultiobj(FITNESSFCN,NVARS,A,b) finds a local Pareto set X of
the objective functions defined in FITNESSFCN, subject to the linear
inequalities A x b∗ ≤ . Linear constraints are supported only for the
default PopulationType option ('doubleVector'). Other population
types, e.g., 'bitString' and 'custom', are not supported.

X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq) finds a local
Pareto set X of the objective functions defined in FITNESSFCN, subject
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to the linear equalities Aeq x beq∗ = as well as the linear inequalities
A x b∗ ≤ . (Set A=[] and b=[] if no inequalities exist.) Linear

constraints are supported only for the default PopulationType option
('doubleVector'). Other population types, e.g., 'bitString' and
'custom', are not supported.

X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB) defines
a set of lower and upper bounds on the design variables X so that
a local Pareto set is found in the range LB x UB≤ ≤ . Use empty
matrices for LB and UB if no bounds exist. Set LB(i) = -Inf if X(i)
is unbounded below; set UB(i) = Inf if X(i) is unbounded above.
Bound constraints are supported only for the default PopulationType
option ('doubleVector'). Other population types, e.g., 'bitString'
and 'custom', are not supported.

X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB,options)
finds a Pareto set X with the default optimization parameters replaced
by values in the structure options. options can be created with the
gaoptimset function.

X = gamultiobj(problem) finds the Pareto set for problem, where
problem is a structure containing the following fields:

fitnessfcn Fitness functions

nvars Number of design variables

Aineq A matrix for linear inequality constraints

bineq b vector for linear inequality constraints

Aeq A matrix for linear equality constraints

beq b vector for linear equality constraints

lb Lower bound on x

ub Upper bound on x

randstate Optional field to reset rand state
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randnstate Optional field to reset randn state

options Options structure created using gaoptimset

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Importing and Exporting Your Work” in the
Optimization Toolbox™ User’s Guide.

[X,FVAL] = gamultiobj(FITNESSFCN,NVARS, ...) returns a matrix
FVAL, the value of all the objective functions defined in FITNESSFCN
at all the solutions in X. FVAL has numberOfObjectives columns and
same number of rows as does X.

[X,FVAL,EXITFLAG] = gamultiobj(FITNESSFCN,NVARS, ...) returns
EXITFLAG, which describes the exit condition of gamultiobj. Possible
values of EXITFLAG and the corresponding exit conditions are listed
in this table.

EXITFLAG
Value

Exit Condition

1 Average change in value of the spread of Pareto set
over options.StallGenLimit generations less than
options.TolFun

0 Maximum number of generations exceeded

-1 Optimization terminated by the output or by the plot
function

-2 No feasible point found

-5 Time limit exceeded

[X,FVAL,EXITFLAG,OUTPUT] = gamultiobj(FITNESSFCN,NVARS,
...) returns a structure OUTPUT with the following fields:

OUTPUT Field Meaning

Output.randstate State of the function rand used before the
genetic algorithm started
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OUTPUT Field Meaning

Output.randnstate State of the function randn used before the
genetic algorithm started

Output.generations Total number of generations, excluding
HybridFcn iterations

Output.funccount Total number of function evaluations

Output.maxconstraint Maximum constraint violation, if any

Output.message gamultiobj termination message

[X,FVAL,EXITFLAG,OUTPUT,POPULATION] =
gamultiobj(FITNESSFCN, ...) returns the final POPULATION at
termination.

[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORE] =
gamultiobj(FITNESSFCN, ...) returns the SCORE of the
final POPULATION.

Example GA Multiobjective

This example optimizes two objectives defined by Schaffer’s second
function: a vector-valued function of two components and one input
argument. The Pareto front is disconnected. Define this function in
an M-file:

function y = schaffer2(x) % y has two columns

% Initialize y for two objectives and for all x
y = zeros(length(x),2);

% Evaluate first objective.
% This objective is piecewise continuous.
for i = 1:length(x)

if x(i) <= 1
y(i,1) = -x(i);

elseif x(i) <=3
y(i,1) = x(i) -2;
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elseif x(i) <=4
y(i,1) = 4 - x(i);

else
y(i,1) = x(i) - 4;

end
end

% Evaluate second objective
y(:,2) = (x -5).^2;

First, plot the two objectives:

x = -1:0.1:8;
y = schaffer2(x);

plot(x,y(:,1),'.r'); hold on
plot(x,y(:,2),'.b');

The two component functions compete in the range [1, 3] and [4, 5]. But
the Pareto-optimal front consists of only two disconnected regions: [1, 2]
and [4, 5]. This is because the region [2, 3] is inferior to [1, 2].

Next, impose a bound constraint on x, − ≤ ≤5 10x setting

lb = -5;
ub = 10;

The best way to view the results of the genetic algorithm is to visualize
the Pareto front directly using the @gaplotpareto option. To optimize
Schaffer’s function, a larger population size than the default (15) is
needed, because of the disconnected front. This example uses 60. Set
the optimization options as:

options = gaoptimset('PopulationSize',60,'PlotFcns',...
@gaplotpareto);

Now call gamultiobj, specifying one independent variable and only the
bound constraints:
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[x,f,exitflag] = gamultiobj(@schaffer2,1,[],[],[],[],...
lb,ub,options);

Optimization terminated: average change in the spread of
Pareto solutions less than options.TolFun.

exitflag
exitflag = 1

The vectors x, f(:,1), and f(:,2) respectively contain the Pareto set
and both objectives evaluated on the Pareto set.

Demos

The gamultiobjfitness demo solves a simple problem with one
decision variable and two objectives.

The gamultiobjoptionsdemo demo shows how to set options for
multiobjective optimization.

References [1] Deb, Kalyanmoy. Multi-Objective Optimization Using Evolutionary
Algorithms. John Wiley & Sons, 2001.

See Also ga, gaoptimget, gaoptimset, patternsearch, @ (Special
Characters), rand, randn
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Purpose Obtain values of genetic algorithm options structure

Syntax val = gaoptimget(options, 'name')
val = gaoptimget(options, 'name', default)

Description val = gaoptimget(options, 'name') returns the value of the
parameter name from the genetic algorithm options structure options.
gaoptimget(options, 'name') returns an empty matrix [] if the
value of name is not specified in options. It is only necessary to type
enough leading characters of name to uniquely identify it. gaoptimget
ignores case in parameter names.

val = gaoptimget(options, 'name', default) returns the 'name'
parameter, but will return the default value if the name parameter is
not specified (or is []) in options.

See Also For more about these options, see “Genetic Algorithm Options” on page
9-23.

ga, gamultiobj, gaoptimset
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Purpose Create genetic algorithm options structure

Syntax gaoptimset
options = gaoptimset
options = gaoptimset(@ga)
options = gaoptimset(@gamultiobj)
options = gaoptimset('param1',value1,'param2',value2,...)
options = gaoptimset(oldopts,'param1',value1,...)
options = gaoptimset(oldopts,newopts)

Description gaoptimset with no input or output arguments displays a complete list
of parameters with their valid values.

options = gaoptimset (with no input arguments) creates a structure
called options that contains the options, or parameters, for the genetic
algorithm and sets parameters to [], indicating default values will
be used.

options = gaoptimset(@ga) creates a structure called options that
contains the default options for the genetic algorithm.

options = gaoptimset(@gamultiobj) creates a structure called
options that contains the default options for gamultiobj.

options = gaoptimset('param1',value1,'param2',value2,...)
creates a structure options and sets the value of 'param1' to value1,
'param2' to value2, and so on. Any unspecified parameters are set
to their default values. It is sufficient to type only enough leading
characters to define the parameter name uniquely. Case is ignored
for parameter names.

options = gaoptimset(oldopts,'param1',value1,...) creates a
copy of oldopts, modifying the specified parameters with the specified
values.

options = gaoptimset(oldopts,newopts) combines an existing
options structure, oldopts, with a new options structure, newopts.
Any parameters in newopts with nonempty values overwrite the
corresponding old parameters in oldopts.
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Options The following table lists the options you can set with gaoptimset. See
“Genetic Algorithm Options” on page 9-23 for a complete description of
these options and their values. Values in {} denote the default value.
You can also view the optimization parameters and defaults by typing
gaoptimset at the command line.

Option Description Values

CreationFcn Handle to the function
that creates the initial
population

{@gacreationuniform}

CrossoverFcn Handle to the function that
the algorithm uses to create
crossover children

@crossoverheuristic
{@crossoverscattered}
@crossoverintermediate
@crossoversinglepoint
@crossovertwopoint
@crossoverarithmetic

CrossoverFraction The fraction of the
population at the next
generation, not including
elite children, that is created
by the crossover function

Positive scalar | {0.8}

Display Level of display 'off' | 'iter' | 'diagnose' |
{'final'}

DistanceMeasureFcn Handle to the function that
computes distance measure
of individuals, computed in
decision variable or design
space (genotype) or in
function space (phenotype)

{@distancecrowding,'phenotype'}
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Option Description Values

EliteCount Positive integer specifying
how many individuals in
the current generation are
guaranteed to survive to the
next generation

Positive integer | {2}

FitnessLimit Scalar. If the fitness
function attains the value
of FitnessLimit, the
algorithm halts.

Scalar | {-Inf}

FitnessScalingFcn Handle to the function that
scales the values of the
fitness function

@fitscalingshiftlinear
@fitscalingprop @fitscalingtop
{@fitscalingrank}

Generations Positive integer specifying
the maximum number
of iterations before the
algorithm halts

Positive integer |{100}

HybridFcn Handle to a function that
continues the optimization
after ga terminates

or

Cell array specifying the
hybrid function and its
options structure

Function handle | @fminsearch
@patternsearch @fminunc
@fmincon {[]}

or

1-by-2 cell array | {@solver,
hybridoptions}, where solver
= fminsearch, patternsearch,
fminunc, or fmincon {[]}

InitialPenalty Initial value of penalty
parameter

Positive scalar | {10}

InitialPopulation Initial population used to
seed the genetic algorithm;
can be partial

Matrix | {[]}
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Option Description Values

InitialScores Initial scores used to
determine fitness; can be
partial

Column vector | {[]}

MigrationDirection Direction of migration 'both' | {'forward'}

MigrationFraction Scalar between 0 and 1
specifying the fraction
of individuals in each
subpopulation that migrates
to a different subpopulation

Scalar | {0.2}

MigrationInterval Positive integer specifying
the number of generations
that take place between
migrations of individuals
between subpopulations

Positive integer | {20}

MutationFcn Handle to the function that
produces mutation children

@mutationuniform
@mutationadaptfeasible
{@mutationgaussian}

OutputFcns Functions that ga calls at
each iteration

@gaoutputgen | {[]}

ParetoFraction Scalar between 0 and 1
specifying the fraction of
individuals to keep on the
first Pareto front while the
solver selects individuals
from higher fronts

Scalar | {0.35}

PenaltyFactor Penalty update parameter Positive scalar | {100}
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Option Description Values

PlotFcns Array of handles to
functions that plot data
computed by the algorithm

@gaplotbestf @gaplotbestindiv
@gaplotdistance
@gaplotexpectation
@gaplotgeneology
@gaplotselection @gaplotrange
@gaplotscorediversity
@gaplotscores @gaplotstopping
| {[]}

PlotInterval Positive integer specifying
the number of generations
between consecutive calls to
the plot functions

Positive integer | {1}

PopInitRange Matrix or vector specifying
the range of the individuals
in the initial population

Matrix or vector | [0;1]

PopulationSize Size of the population Positive integer | {20}

PopulationType String describing the data
type of the population

'bitstring' | 'custom' |
{'doubleVector'}

Note that linear and nonlinear
constraints are not satisfied
when PopulationType is set to
'bitString' or 'custom'.

SelectionFcn Handle to the function that
selects parents of crossover
and mutation children

@selectionremainder
@selectionuniform
{@selectionstochunif}
@selectionroulette
@selectiontournament
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Option Description Values

StallGenLimit Positive integer. The
algorithm stops if there
is no improvement in
the objective function for
StallGenLimit consecutive
generations.

Positive integer | {50}

StallTimeLimit Positive scalar. The
algorithm stops if there
is no improvement in
the objective function for
StallTimeLimit seconds.

Positive scalar | {Inf}

TimeLimit Positive scalar. The
algorithm stops after
running for TimeLimit
seconds.

Positive scalar | {Inf}

TolCon Positive scalar. TolCon
is used to determine the
feasibility with respect to
nonlinear constraints.

Positive scalar | {1e-6}

TolFun Positive scalar. The
algorithm runs until the
cumulative change in the
fitness function value over
StallGenLimit is less than
TolFun.

Positive scalar | {1e-6}

UseParallel Compute fitness functions
of a population in parallel.

'always' | {'never'}

Vectorized String specifying whether
the computation of the
fitness function is vectorized

'on' | {'off'}
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See Also For more about these options, see “Genetic Algorithm Options” on page
9-23.

ga, gamultiobj, gaoptimget
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Purpose Find minimum of function using pattern search

Syntax x = patternsearch(@fun,x0)
x = patternsearch(@fun,x0,A,b)
x = patternsearch(@fun,x0,A,b,Aeq,beq)
x = patternsearch(@fun,x0,A,b,Aeq,beq,LB,UB)
x = patternsearch(@fun,x0,A,b,Aeq,beq,LB,UB,nonlcon)
x = patternsearch(@fun,x0,A,b,Aeq,beq,LB,UB,nonlcon,options)
x = patternsearch(problem)
[x,fval] = patternsearch(@fun,x0, ...)
[x,fval,exitflag] = patternsearch(@fun,x0, ...)
[x,fval,exitflag,output] = patternsearch(@fun,x0, ...)

Description patternsearch finds the minimum of a function using a pattern search.

x = patternsearch(@fun,x0) finds the local minimum, x, to the
MATLAB® function, fun, that computes the values of the objective
function f(x), and x0 is an initial point for the pattern search algorithm.
The function patternsearch accepts the objective function as a function
handle of the form @fun. The function fun accepts a vector input and
returns a scalar function value.

Note To write a function with additional parameters to the independent
variables that can be called by patternsearch, see the section on
“Passing Extra Parameters” in the Optimization Toolbox™ User’s Guide.

x = patternsearch(@fun,x0,A,b) finds a local minimum x to the
function fun, subject to the linear inequality constraints represented
in matrix form by Ax b≤ .

If the problem has m linear inequality constraints and n variables, then

• A is a matrix of size m-by-n.

• b is a vector of length m.
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x = patternsearch(@fun,x0,A,b,Aeq,beq) finds a local minimum x
to the function fun, starting at x0, and subject to the constraints

Ax b≤
Aeq x beq∗ =

where Aeq x beq∗ = represents the linear equality constraints in
matrix form. If the problem has r linear equality constraints and n
variables, then

• Aeq is a matrix of size r-by-n.

• beq is a vector of length r.

If there are no inequality constraints, pass empty matrices, [], for
A and b.

x = patternsearch(@fun,x0,A,b,Aeq,beq,LB,UB) defines a set of
lower and upper bounds on the design variables, x, so that a solution is
found in the range LB x UB<≤ <≤ . If the problem has n variables, LB
and UB are vectors of length n. If LB or UB is empty (or not provided),
it is automatically expanded to -Inf or Inf, respectively. If there are
no inequality or equality constraints, pass empty matrices for A, b, Aeq
and beq.

x = patternsearch(@fun,x0,A,b,Aeq,beq,LB,UB,nonlcon) subjects
the minimization to the constraints defined in nonlcon, a nonlinear
constraint function. The function nonlcon accepts x and returns
the vectors C and Ceq, representing the nonlinear inequalities and
equalities respectively. fmincon minimizes fun such that C(x) ≤ 0 and
Ceq(x) = 0. (Set LB = [] and UB = [] if no bounds exist.)

x =
patternsearch(@fun,x0,A,b,Aeq,beq,LB,UB,nonlcon,options)
minimizes fun with the default optimization parameters replaced
by values in options. The structure options can be created
using psoptimset.

x = patternsearch(problem) finds the minimum for problem, where
problem is a structure containing the following fields:
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• objective — Objective function

• X0 — Starting point

• Aineq — Matrix for linear inequality constraints

• bineq — Vector for linear inequality constraints

• Aeq — Matrix for linear equality constraints

• beq — Vector for linear equality constraints

• lb — Lower bound for x

• ub — Upper bound for x

• nonlcon — Nonlinear constraint function

• Solver — 'patternsearch'

• options — Options structure created with psoptimset

• randstate — Optional field to reset the state of rand

• randnstate — Optional field to reset the state of randn

Create the structure problem by exporting a problem from the
Optimization Tool, as described in “Importing and Exporting Your
Work” in the Optimization Toolbox User’s Guide.

Note problem must have all the fields as specified above.

[x,fval] = patternsearch(@fun,x0, ...) returns the value of the
objective function fun at the solution x.

[x,fval,exitflag] = patternsearch(@fun,x0, ...) returns
exitflag, which describes the exit condition of patternsearch.
Possible values of exitflag and the corresponding conditions are
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1 Magnitude of mesh size is less than specified tolerance and
constraint violation less than options.TolCon.

2 Change in x less than the specified tolerance and constraint
violation less than options.TolCon.

4 Magnitude of step smaller than machine precision and
constraint violation less than options.TolCon.

0 Maximum number of function evaluations or iterations
reached.

-1 Optimization terminated by the output or plot function.

-2 No feasible point found.

[x,fval,exitflag,output] = patternsearch(@fun,x0, ...)
returns a structure output containing information about the search.
The output structure contains the following fields:

• function — Objective function

• problemtype — Type of problem: unconstrained, bound constrained
or linear constrained

• pollmethod — Polling technique

• searchmethod — Search technique used, if any

• iteration — Total number of iterations

• funccount — Total number of function evaluations

• meshsize — Mesh size at x

• maxconstraint — Maximum constraint violation, if any

• message — Reason why the algorithm terminated

11-25



patternsearch

Note patternsearch does not accepts functions whose inputs are of
type complex. To solve problems involving complex data, write your
functions so that they accept real vectors, by separating the real and
imaginary parts.

Example Given the following constraints
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the following code finds the minimum of the function, lincontest6,
that is provided with your software:

A = [1 1; -1 2; 2 1];
b = [2; 2; 3];
lb = zeros(2,1);
[x,fval,exitflag] = patternsearch(@lincontest6,[0 0],...

A,b,[],[],lb)
Optimization terminated: mesh size less than

options.TolMesh.

x =
0.6667 1.3333

fval =
-8.2222

exitflag =
1
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Purpose Obtain values of pattern search options structure

Syntax val = psoptimget(options,'name')
val = psoptimget(options,'name',default)

Description val = psoptimget(options,'name') returns the value of the
parameter name from the pattern search options structure options.
psoptimget(options, 'name') returns an empty matrix [] if the
value of name is not specified in options. It is only necessary to type
enough leading characters of name to uniquely identify it. psoptimget
ignores case in parameter names.

val = psoptimget(options,'name',default) returns the value of the
parameter name from the pattern search options structure options, but
returns default if the parameter is not specified (as in []) in options.

Example val = psoptimget(opts,'TolX',1e-4);

returns val = 1e-4 if the TolX property is not specified in opts.

See Also For more about these options, see “Pattern Search Options” on page 9-2.

psoptimset, patternsearch
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Purpose Create pattern search options structure

Syntax psoptimset
options = psoptimset
options = psoptimset('param1',value1,'param2',value2,...)
options = psoptimset(oldopts,'param1',value1,...)
options = psoptimset(oldopts,newopts)

Description psoptimset with no input or output arguments displays a complete list
of parameters with their valid values.

options = psoptimset (with no input arguments) creates a structure
called options that contains the options, or parameters, for the pattern
search and sets parameters to their default values.

options = psoptimset('param1',value1,'param2',value2,...)
creates a structure options and sets the value of 'param1' to value1,
'param2' to value2, and so on. Any unspecified parameters are set
to their default values. It is sufficient to type only enough leading
characters to define the parameter name uniquely. Case is ignored
for parameter names.

options = psoptimset(oldopts,'param1',value1,...) creates a
copy of oldopts, modifying the specified parameters with the specified
values.

options = psoptimset(oldopts,newopts) combines an existing
options structure, oldopts, with a new options structure, newopts.
Any parameters in newopts with nonempty values overwrite the
corresponding old parameters in oldopts.

Options The following table lists the options you can set with psoptimset.
See“Pattern Search Options” on page 9-2 for a complete description of
the options and their values. Values in {} denote the default value.
You can also view the optimization parameters and defaults by typing
psoptimset at the command line.
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Option Description Values

Cache With Cache set to 'on',
patternsearch keeps
a history of the mesh
points it polls and does
not poll points close to
them again at subsequent
iterations. Use this option
if patternsearch runs
slowly because it is taking
a long time to compute
the objective function. If
the objective function is
stochastic, it is advised not
to use this option.

'on' | {'off'}

CacheSize Size of the history Positive scalar | {1e4}

CacheTol Positive scalar specifying
how close the current mesh
point must be to a point
in the history in order for
patternsearch to avoid
polling it. Use if 'Cache'
option is set to 'on'.

Positive scalar | {eps}

CompletePoll Complete poll around
current iterate

'on' | {'off'}

CompleteSearch Complete poll around
current iterate

'on' | {'off'}

Display Level of display 'off' | 'iter' | 'diagnose' |
{'final'}

InitialMeshSize Initial mesh size for
pattern algorithm

Positive scalar | {1.0}

InitialPenalty Initial value of the penalty
parameter

Positive scalar | {10}
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Option Description Values

MaxFunEvals Maximum number
of objective function
evaluations

Positive integer |
{2000*numberOfVariables}

MaxIter Maximum number of
iterations

Positive integer |
{100*numberOfVariables}

MaxMeshSize Maximum mesh size used
in a poll/search step

Positive scalar | {Inf}

MeshAccelerator Accelerate convergence
near a minimum

'on' | {'off'}

MeshContraction Mesh contraction factor,
used when iteration is
unsuccessful

Positive scalar | {0.5}

MeshExpansion Mesh expansion factor,
expands mesh when
iteration is successful

Positive scalar | {2.0}

MeshRotate Rotate the pattern before
declaring a point to be
optimum

'off' | {'on'}

OutputFcn Specifies a user-defined
function that an
optimization function
calls at each iteration

@psoutputhistory | {[]}

PenaltyFactor Penalty update parameter Positive scalar | {100}

PlotFcn Specifies plots of output
from the pattern search

@psplotbestf | @psplotmeshsize |
@psplotfuncount | @psplotbestx |
{[]}

PlotInterval Specifies that plot
functions will be called
at every interval

{1}
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Option Description Values

PollingOrder Order of poll directions in
pattern search

'Random' | 'Success' |
{'Consecutive'}

PollMethod Polling strategy used in
pattern search

{'GPSPositiveBasis2N'} |
'GPSPositiveBasisNp1'|
'MADSPositiveBasis2N' |
'MADSPositiveBasisNp1'

ScaleMesh Automatic scaling of
variables

{'on'} | 'off'

SearchMethod Type of search used in
pattern search

'GPSPositiveBasisNp1' |
'GPSPositiveBasis2N' |
'MADSPositiveBasisNp1' |
'MADSPositiveBasis2N' |
@searchga | @searchlhs |
@searchneldermead| {[]}

TimeLimit Total time (in seconds)
allowed for optimization

Positive scalar | {Inf}

TolBind Binding tolerance Positive scalar | {1e-3}

TolCon Tolerance on constraints Positive scalar | {1e-6}

TolFun Tolerance on function Positive scalar | {1e-6}

TolMesh Tolerance on mesh size Positive scalar | {1e-6}

TolX Tolerance on variable Positive scalar | {1e-6}

UseParallel Compute objective
functions of a poll or
search in parallel.

'always' | {'never'}

Vectorized Specifies whether
functions are vectorized

'on' | {'off'}

See Also patternsearch, psoptimget
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Purpose Values of simulated annealing or threshold acceptance algorithm
options structure

Syntax val = saoptimget(options, 'name')
val = saoptimget(options, 'name', default)

Description val = saoptimget(options, 'name') returns the value of the
parameter name from the simulated annealing or threshold acceptance
algorithm options structure options. saoptimget(options, 'name')
returns an empty matrix [] if the value of name is not specified in
options. It is only necessary to type enough leading characters of
name to uniquely identify the parameter. saoptimget ignores case in
parameter names.

val = saoptimget(options, 'name', default) returns the 'name'
parameter, but returns the default value if the 'name' parameter is
not specified (or is []) in options.

Example opts = saoptimset('TolFun',1e-4);
val = saoptimget(opts,'TolFun');

returns val = 1e-4 for TolFun.

See Also For more about these options, see “Simulated Annealing and Threshold
Acceptance Algorithm Options” on page 9-46.

saoptimset, simulannealbnd, threshacceptbnd
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Purpose Create simulated annealing algorithm or threshold acceptance options
structure

Syntax saoptimset
options = saoptimset
options = saoptimset('param1',value1,'param2',value2,...)
options = saoptimset(oldopts,'param1',value1,...)
options = saoptimset(oldopts,newopts)
options = saoptimset(optimfunction)

Description saoptimset with no input or output arguments displays a complete list
of parameters with their valid values.

options = saoptimset (with no input arguments) creates a structure
called options that contains the options, or parameters, for the
simulated annealing or threshold acceptance algorithm with all
parameters set to [].

options = saoptimset('param1',value1,'param2',value2,...)
creates a structure options and sets the value of 'param1' to value1,
'param2' to value2, and so on. Any unspecified parameters are set to
[]. It is sufficient to type only enough leading characters to define the
parameter name uniquely. Case is ignored for parameter names. Note
that for string values, correct case and the complete string are required.

options = saoptimset(oldopts,'param1',value1,...) creates a
copy of oldopts, modifying the specified parameters with the specified
values.

options = saoptimset(oldopts,newopts) combines an existing
options structure, oldopts, with a new options structure, newopts.
Any parameters in newopts with nonempty values overwrite the
corresponding old parameters in oldopts.

options = saoptimset(optimfunction) creates an options structure
with all the parameter names and default values relevant to the
optimization function optimfunction. optimfunction can be either
'simulannealbnd' or 'threshacceptbnd'. For example,
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saoptimset('threshacceptbnd')

ans =
AnnealingFcn: @annealingfast

TemperatureFcn: @temperatureexp
AcceptanceFcn: @acceptancethresh

TolFun: 1.0000e-006
StallIterLimit: '500*numberofvariables'

MaxFunEvals: '3000*numberofvariables'
TimeLimit: Inf

MaxIter: Inf
ObjectiveLimit: -Inf

Display: 'final'
DisplayInterval: 10

HybridFcn: []
HybridInterval: 'end'

PlotFcns: []
PlotInterval: 1

OutputFcns: []
InitialTemperature: 100

ReannealInterval: 100
DataType: 'double'

Options The following table lists the options you can set with saoptimset. See
Chapter 9, “Options Reference” for a complete description of these
options and their values. Values in {} denote the default value. You
can also view the options parameters by typing saoptimset at the
command line.

Option Description Values

AcceptanceFcn Handle to the function the
algorithm uses to determine
if a new point is accepted

Function handle |
@acceptancethresh
|{@acceptancesa} for
simulannealbnd or
{@acceptancethresh} for
threshacceptbnd
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Option Description Values

AnnealingFcn Handle to the function the
algorithm uses to generate
new points

Function handle |
@annealingboltz |
{@annealingfast}

DataType Type of decision variable 'custom' | {'double'}

Display Level of display 'off' | 'iter' | 'diagnose' |
{'final'}

DisplayInterval Interval for iterative display Positive integer | {10}

HybridFcn Automatically run HybridFcn
(another optimization
function) during or at the end
of iterations of the solver

Function handle | @fminsearch
@patternsearch @fminunc
@fmincon {[]}

or

1-by-2 cell array | {@solver,
hybridoptions}, where solver
= fminsearch, patternsearch,
fminunc, or fmincon {[]}

HybridInterval Interval (if not 'end' or
'never') at which HybridFcn
is called

Positive integer | 'never' |
{'end'}

InitialTemperature Initial value of temperature Positive integer |{100}

MaxFunEvals Maximum number of
objective function evaluations
allowed

Positive scalar |
{3000*numberOfVariables}

MaxIter Maximum number of
iterations allowed

Positive scalar | {Inf}

ObjectiveLimit Minimum objective function
value desired

Scalar | {Inf}

OutputFcns Function(s) get(s) iterative
data and can change options
at run time

Function handle or cell array of
function handles | {[]}
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Option Description Values

PlotFcns Plot function(s) called during
iterations

Function handle or cell
array of function handles |
@saplotbestf | @saplotbestx |
@saplotf | @saplotstopping |
@saplottemperature | {[]}

PlotInterval Plot functions are called at
every interval

Positive integer |{1}

ReannealInterval Reannealing interval Positive integer | {100}

StallIterLimit Number of iterations over
which average change in
fitness function value at
current point is less than
options.TolFun

Positive integer |
{500*numberOfVariables}

TemperatureFcn Function used to update
temperature schedule

Function handle |
@temperatureboltz |
@temperaturefast |
{@temperatureexp}

TimeLimit The algorithm stops after
running for TimeLimit
seconds

Positive scalar | {Inf}

TolFun Termination tolerance on
function value

Positive scalar | {1e-6}

See Also For more about these options, see “Simulated Annealing and Threshold
Acceptance Algorithm Options” on page 9-46.

saoptimget, simulannealbnd, threshacceptbnd
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Purpose Find unconstrained or bound-constrained minimum of function of
several variables using simulated annealing algorithm

Syntax x = simulannealbnd(fun,x0)
x = simulannealbnd(fun,x0,lb,ub)
x = simulannealbnd(fun,x0,lb,ub,options)
x = simulannealbnd(problem)
[x,fval] = simulannealbnd(...)
[x,fval,exitflag] = simulannealbnd(...)
[x,fval,exitflag,output] = simulannealbnd(fun,...)

Description x = simulannealbnd(fun,x0) starts at x0 and finds a local minimum
x to the objective function specified by the function handle fun. The
objective function accepts input x and returns a scalar function value
evaluated at x. x0 may be a scalar or a vector.

x = simulannealbnd(fun,x0,lb,ub) defines a set of lower and upper
bounds on the design variables, x, so that a solution is found in the
range lb ≤ x ≤ ub. Use empty matrices for lb and ub if no bounds
exist. Set lb(i) to -Inf if x(i) is unbounded below; set ub(i) to Inf if
x(i) is unbounded above.

x = simulannealbnd(fun,x0,lb,ub,options) minimizes with the
default optimization parameters replaced by values in the structure
options, which can be created using the saoptimset function. See the
saoptimset reference page for details.

x = simulannealbnd(problem) finds the minimum for problem, where
problem is a structure containing the following fields:

objective Objective function

x0 Initial point of the search

lb Lower bound on x

ub Upper bound on x

randstate Optional field to reset rand state
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randnstate Optional field to reset randn state

solver 'simulannealbnd'

options Options structure created using saoptimset

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Importing and Exporting Your Work” in the
Optimization Toolbox™ User’s Guide.

[x,fval] = simulannealbnd(...) returns fval, the value of the
objective function at x.

[x,fval,exitflag] = simulannealbnd(...) returns exitflag,
an integer identifying the reason the algorithm terminated. The
following lists the values of exitflag and the corresponding reasons
the algorithm terminated:

• 1 — Average change in the value of the objective function over
options.StallIterLimit iterations is less than options.TolFun.

• 5 — options.ObjectiveLimit limit reached.

• 0 — Maximum number of function evaluations or iterations exceeded.

• -1 — Optimization terminated by the output or plot function.

• -2 — No feasible point found.

• -5 — Time limit exceeded.

[x,fval,exitflag,output] = simulannealbnd(fun,...) returns
output, a structure that contains information about the problem and
the performance of the algorithm. The output structure contains the
following fields:

• problemtype — Type of problem: unconstrained or bound
constrained.

• iterations — The number of iterations computed.

• funccount — The number of evaluations of the objective function.
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• message — The reason the algorithm terminated.

• temperature — Temperature when the solver terminated.

• totaltime — Total time for the solver to run.

• randstate — The state of rand, the MATLAB® random number
generator, just before the algorithm started.

• randnstate — The state of randn the MATLAB normal random
number generator, just before the algorithm started. You can use
the values of randstate and randnstate to reproduce the output of
simulannealbnd. See “Reproducing Your Results” on page 7-5.

Examples Minimization of De Jong’s fifth function, a two-dimensional function
with many local minima. Enter the command dejong5fcn to generate
the following plot.
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x0 = [0 0];
[x,fval] = simulannealbnd(@dejong5fcn,x0)

Optimization terminated: change in best function value
less than options.TolFun.

x =
0.0392 -31.9700

fval =
2.9821

Minimization of De Jong’s fifth function subject to lower and upper
bounds:
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x0 = [0 0];
lb = [-64 -64];
ub = [64 64];
[x,fval] = simulannealbnd(@dejong5fcn,x0,lb,ub)

Optimization terminated: change in best function value
less than options.TolFun.

x =
-31.9652 -32.0286

fval =
0.9980

The objective can also be an anonymous function:

fun = @(x) 3*sin(x(1))+exp(x(2));
x = simulannealbnd(fun,[1;1],[0 0])

Optimization terminated: change in best function value
less than options.TolFun.

x =
457.1045

0.0000

Minimization of De Jong’s fifth function while displaying plots:

x0 = [0 0];
options = saoptimset('PlotFcns',{@saplotbestx,...

@saplotbestf,@saplotx,@saplotf});
simulannealbnd(@dejong5fcn,x0,[],[],options)

Optimization terminated: change in best function value
less than options.TolFun.
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ans =
0.0230 -31.9806

The plots displayed are shown below.

See Also ga, patternsearch, saoptimget, saoptimset, threshacceptbnd
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Purpose Find unconstrained or bound-constrained minimum of function of
several variables using threshold acceptance algorithm

Syntax x = threshacceptbnd(fun,x0)
x = threshacceptbnd(fun,x0,lb,ub)
x = threshacceptbnd(fun,x0,lb,ub,options)
x = threshacceptbnd(problem)
[x,fval] = threshacceptbnd(...)
[x,fval,exitflag] = threshacceptbnd(...)
[x,fval,exitflag,output] = threshacceptbnd(...)

Description x = threshacceptbnd(fun,x0) starts at x0 and finds a local minimum
x to the objective function specified by the function handle fun. The
objective function accepts input x and returns a scalar function value
evaluated at x. x0 may be a scalar or a vector.

x = threshacceptbnd(fun,x0,lb,ub) defines a set of lower and upper
bounds on the design variables, x, so that a solution is found in the
range lb ≤ x ≤ ub. Use empty matrices for lb and ub if no bounds
exist. Set lb(i) to -Inf if x(i) is unbounded below; set ub(i) to Inf if
x(i) is unbounded above.

x = threshacceptbnd(fun,x0,lb,ub,options) minimizes with the
default optimization parameters replaced by values in the structure
options, which can be created using the saoptimset function. See the
saoptimset reference page for details.

x = threshacceptbnd(problem) finds the minimum for problem,
where problem is a structure containing the following fields:

objective Objective function

x0 Initial point of the search

lb Lower bound on x

ub Upper bound on x

randstate Optional field to reset rand state
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randnstate Optional field to reset randn state

solver 'threshacceptbnd'

options Options structure created using saoptimset

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Importing and Exporting Your Work” in the
Optimization Toolbox™ User’s Guide.

[x,fval] = threshacceptbnd(...) returns fval, the value of the
objective function at x.

[x,fval,exitflag] = threshacceptbnd(...) returns exitflag,
an integer identifying the reason the algorithm terminated. The
following lists the values of exitflag and the corresponding reasons
the algorithm terminated:

• 1 — Average change in the value of the objective function over
options.StallIterLimit iterations is less than options.TolFun.

• 5 — options.ObjectiveLimit limit reached.

• 0 — Maximum number of function evaluations or iterations exceeded.

• -1 — Optimization terminated by the output or plot function.

• -2 — No feasible point found.

• -5 — Time limit exceeded.

[x,fval,exitflag,output] = threshacceptbnd(...) returns
output, a structure that contains information about the problem and
the performance of the algorithm. The output structure contains the
following fields:

• problemtype — Type of problem: unconstrained or bound
constrained.

• iterations — The number of iterations computed.

• funccount — The number of evaluations of the objective function.
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• message — The reason the algorithm terminated.

• temperature — Temperature when the solver terminated.

• totaltime — Total time for the solver to run.

• randstate — The state of rand, the MATLAB® random number
generator, just before the algorithm started.

• randnstate — The state of randn, the MATLAB normal random
number generator, just before the algorithm started. You can use
the values of randstate and randnstate to reproduce the output of
simulannealbnd. See “Reproducing Your Results” on page 7-5.

Examples Minimization of De Jong’s fifth function, a two-dimensional function
with many local minima. Enter the command dejong5fcn to generate
the following plot.
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x0 = [0 0];
[x,fval] = simulannealbnd(@dejong5fcn,x0)

Optimization terminated: change in best function value
less than options.TolFun.

x =
0.0392 -31.9700

fval =
2.9821

Minimization of De Jong’s fifth function subject to lower and upper
bounds:
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x0 = [0 0];
lb = [-64 -64];
ub = [64 64];
[x,fval] = simulannealbnd(@dejong5fcn,x0,lb,ub)

Optimization terminated: change in best function value
less than options.TolFun.

x =
-31.9652 -32.0286

fval =
0.9980

The objective can also be an anonymous function:

fun = @(x) 3*sin(x(1))+exp(x(2));
x = simulannealbnd(fun,[1;1],[0 0])

Optimization terminated: change in best function value
less than options.TolFun.

x =
457.1045

0.0000

Minimization of De Jong’s fifth function while displaying plots:

x0 = [0 0];
options = saoptimset('PlotFcns',{@saplotbestx,...

@saplotbestf,@saplotx,@saplotf});
simulannealbnd(@dejong5fcn,x0,[],[],options)

Optimization terminated: change in best function value
less than options.TolFun.
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ans =
0.0230 -31.9806

The plots displayed are shown below.

See Also saoptimget, saoptimset, threshacceptbnd, patternsearch, ga
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Examples

Use this list to find examples in the documentation.



A Examples

Pattern Search
“Example: Finding the Minimum of a Function Using the GPS Algorithm”
on page 2-7
“Example — A Linearly Constrained Problem” on page 5-2
“Example — Working with a Custom Plot Function” on page 5-6
“Example — Using a Complete Poll in a Generalized Pattern Search” on
page 5-19
“Example — Setting Bind Tolerance” on page 5-35

Genetic Algorithm
“Example: Rastrigin’s Function” on page 3-8
“Example — Creating a Custom Plot Function” on page 6-3
“Example — Resuming the Genetic Algorithm from the Final Population”
on page 6-7
“Example — Linearly Constrained Population and Custom Plot Function”
on page 6-26
“Global vs. Local Minima” on page 6-44
“Example — Multiobjective Optimization” on page 8-7
GA Multiobjective on page 11-11

Simulated Annealing and Threshold Acceptance
Algorithms

“Example: Minimizing De Jong’s Fifth Function” on page 4-8
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